Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(31): 17321-17328, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37499097

ABSTRACT

Generation of clean energy in a viable manner demands efficient and sustainable catalysts. One prospective method of clean energy generation is the electrochemical hydrogen evolution reaction (HER). Over the years, various transition metal-based complexes/polymeric organic materials were utilized in HER. However, the use of a redox-active small organic molecule as a catalyst for HER has not been explored well. The requirements of a strongly acidic solution, very high overpotential, and stability under acidic conditions pose several challenges for applying organic electrocatalysts for HER. Considering these challenges, herein, we demonstrated an NADP+-like organic system (NADP+ = nicotinamide adenine dinucleotide phosphate), a bis-imidazolium-fused heterohelicene, which acts as a catalyst for HER with mild acid (acetic acid) as a proton source at moderate overpotential. The unique structural backbone of this dicationic heterohelicene allowed to exploit the NADP+/NADPH-type (NADPH = reduced nicotinamide adenine dinucleotide phosphate) hydride transfer-based redox cycle efficiently under the applied conditions, where the NADPH-like hydride intermediate transfers the hydride to the proton of the mild acid to generate H2. The Faradaic efficiency and turnover number for the present HER were achieved up to 85 ± 5% and 50 ± 3, respectively. In addition, the maximum turnover frequency, TOFmax, value of 410 s-1 was observed, which is around 400 times that obtained for the existing reported NADP+-like organic compounds used as catalysts for HER. Thorough mechanistic studies were conducted experimentally and computationally to establish a plausible catalytic cycle. This advancement could help in designing efficient organic electrocatalysts for HER from a mild proton source.

2.
J Am Chem Soc ; 145(13): 7230-7241, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-36944228

ABSTRACT

Biomimetic NAD(P)H-type organic hydride donors have recently been advocated as potential candidates to act as metal-free catalysts for fuel-forming reactions such as the reduction of CO2 to formic acid and methanol, similar to the natural photosynthesis process of fixing CO2 into carbohydrates. Although these artificial synthetic organic hydrides are extensively used in organic reduction chemistry in a stoichiometric manner, translating them into catalysts has been challenging due to problems associated with the regeneration of these hydride species under applied reaction conditions. A recent discovery of the possibility of their regeneration under electrochemical conditions via a proton-coupled electron-transfer pathway triggered intense research to accomplish their catalytic use in electrochemical CO2 reduction reactions (eCO2RR). However, success is yet to be realized to term them as "true" catalysts, as the typical turnover numbers (TONs) of the eCO2RR processes on inert electrodes for the production of formic acid and/or methanol reported so far are still in the order of 10-3-10-2; thus, sub-stoichiometric only! Herein, we report a novel class of structurally engineered heterohelicene-based organic hydride donor with a proof-of-principle demonstration of catalytic electrochemical CO2 reduction reaction showing a significantly improved activity with more than stoichiometric turnover featuring a 100-1000-fold enhancement of the existing TON values. Mechanistic investigations suggested the critical role of the two cationic imidazolium motifs along with the extensive π-conjugation present in the backbone of the heterohelicene molecules in accessing and stabilizing various radical species involved in the generation and transfer of hydride, via multielectron-transfer steps in the electrochemical process.

SELECTION OF CITATIONS
SEARCH DETAIL
...