Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Carbohydr Polym ; 339: 122237, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823907

ABSTRACT

This review discusses the development and application of nanocellulose (NC)-aerogels, a sustainable and biodegradable biomaterial, with enhanced flame retardant (FR) properties. NC-aerogels combine the excellent physical and mechanical properties of NC with the low density and thermal conductivity of aerogels, making them promising for thermal insulation and other fields. However, the flammability of NC-aerogels limits their use in some applications, such as electromagnetic interference shielding, oil/water separation, and flame-resistant textiles. The review covers the design, fabrication, modification, and working mechanism of NC porous materials, focusing on how advanced technologies can impart FR properties into them. The review also evaluates the FR performance of NC-aerogels by employing widely recognized tests, such as the limited oxygen index, cone calorimeter, and UL-94. The review also explores the integration of innovative and eco-friendly materials, such as MXene, metal-organic frameworks, dopamine, lignin, and alginate, into NC-aerogels, to improve their FR performance and functionality. The review concludes by outlining the potential, challenges, and limitations of future research on FR NC-aerogels, identifying the obstacles and potential solutions, and understanding the current progress and gaps in the field.

2.
J Occup Environ Hyg ; 21(4): 213-219, 2024.
Article in English | MEDLINE | ID: mdl-38416517

ABSTRACT

Personal protective equipment (PPE) is designed to protect firefighters from hazards encountered on the fire scene, including heat and products of combustion. Decontamination practices for firefighter turnout gear have been developed to remove combustion products and other contaminants from the fabric of structural firefighting ensembles (i.e., turnout or bunker gear). Chronic exposures to residual polycyclic aromatic hydrocarbons (PAH) are a contributing cause of firefighter cancers. To identify and quantify residual contamination of PAH, samples were taken from two individual decommissioned structural firefighting ensembles and analyzed by layer (outer canvas shell, moisture barrier, and the thermal protective liner) for (1) textile integrity via field emission scanning electron microscopy and (2) quantity of PAH contamination by high-pressure liquid chromatography with ultraviolet/fluorescence detection. The results of these analyses show the presence of the PAH compounds pyrene (35% of the total mass of PAH), phenanthrene (21%), benzo(a)pyrene (14%), and benzo(a)anthracene (14%) which present a risk for dermal absorption. The data also revealed that PAH penetration through the layers of the firefighting ensemble was strongly inhibited by the moisture barrier layer.


Subject(s)
Air Pollutants, Occupational , Firefighters , Occupational Exposure , Polycyclic Aromatic Hydrocarbons , Humans , Occupational Exposure/adverse effects , Occupational Exposure/analysis , Air Pollutants, Occupational/analysis , Carcinogens/analysis , Personal Protective Equipment , Carcinogenesis , Polycyclic Aromatic Hydrocarbons/analysis
3.
J Tradit Complement Med ; 14(1): 55-69, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223813

ABSTRACT

Background and aim: Novel nature of the viral pathogen SARS-CoV-2 and the absence of standard drugs for treatment, have been a major challenge to combat this deadly infection. Natural products offer safe and effective remedy, for which traditional ethnic medicine can provide leads. An indigenous poly-herbal formulation, Kabasura Kudineer from Siddha system of medicine was evaluated here using a combination of computational approaches, to identify potential inhibitors against two anti-SARS-CoV-2 targets - post-fusion Spike protein (structural protein) and main protease (Mpro, non-structural protein). Experimental procedure: We docked 32 phytochemicals from the poly-herbal formulation against viral post-fusion Spike glycoprotein and Mpro followed by molecular dynamics using Schrodinger software. Drug-likeness analysis was performed using machine learning (ML) approach and pkCSM. Results: The binding affinity of the phytochemicals in Kabasura Kudineer revealed the following top-five bioactives: Quercetin > Luteolin > Chrysoeriol > 5-Hydroxy-7,8-Dimethoxyflavone > Scutellarein against Mpro target, and Gallic acid > Piperlonguminine > Chrysoeriol > Elemol > Piperine against post-fusion Spike protein target. Quercetin and Gallic acid exhibited binding stability in complexation with their respective viral-targets and favourable free energy change as revealed by the molecular dynamics simulations and MM-PBSA analysis. In silico predicted pharmacokinetic profiling of these ligands revealed appropriate drug-likeness properties. Conclusion: These outcomes provide: (a) potential mechanism for the anti-viral efficacy of the indigenous Siddha formulation, targeting Mpro and post-fusion Spike protein (b) top bioactive lead-molecules that may be developed as natural product-based anti-viral pharmacotherapy and their pleiotropic protective effects may be leveraged to manage co-morbidities associated with COVID-19.

4.
Small Methods ; : e2301132, 2024 Jan 14.
Article in English | MEDLINE | ID: mdl-38221715

ABSTRACT

Electrocatalysis performs a vital role in numerous energy transformation and repository mechanics, including power cells, Electric field-assisted catalysis, and batteries. It is crucial to investigate new methods to improve electrocatalytic performance if effective and long-lasting power systems are developed. The modulation of catalytic activity and selectivity by external magnetic fields over electrochemical processes has received a lot of interest lately. How the use of various magnetic fields in electrocatalysis has great promise for building effective and selective catalysts, opening the door for the advancement of sophisticated energy conversion is discussed. Furthermore, the challenges and possibilities of incorporating magnetic fields into electrocatalytic systems and suggestions for future research areas are discussed.

5.
RSC Adv ; 13(47): 33336-33375, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37964903

ABSTRACT

Owing to the unique physical and chemical properties of 2D materials and the great success of graphene in various applications, the scientific community has been influenced to explore a new class of graphene-like 2D materials for next-generation technological applications. Consequently, many alternative layered and non-layered 2D materials, including h-BN, TMDs, and MXenes, have been synthesized recently for applications related to the 4th industrial revolution. In this review, recent progress in state-of-the-art research on 2D materials, including their synthesis routes, characterization and application-oriented properties, has been highlighted. The evolving applications of 2D materials in the areas of electronics, optoelectronics, spintronic devices, sensors, high-performance and transparent electrodes, energy conversion and storage, electromagnetic interference shielding, hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and nanocomposites are discussed. In particular, the state-of-the-art applications, challenges, and outlook of every class of 2D material are also presented as concluding remarks to guide this fast-progressing class of 2D materials beyond graphene for scientific research into next-generation materials.

6.
Article in English | MEDLINE | ID: mdl-37587397

ABSTRACT

As the spectre of climate change gains in strength with each passing moment, many of our mundane food crops like rice face the heat, leading to uncertain yields and unforeseen disease outbreaks. Subsequently, mankind is forced to look for alternative food choices that should primarily come from indigenous plants that are less demanding in terms of usage of water and application of chemical-based fertilizers/pesticides. There are plants growing in the wild in the arid and semi-arid zones of Rajasthan, India, that can come to the rescue, with an added potential for development into valuable functional foods-i.e., not only as source of carbohydrates, proteins, and micro-nutrients but also that of health benefiting nutraceuticals (like antioxidant flavonoids) and relevant enzymes. The other parts (non-edible) of these plants have often also been traditionally validated via diverse ethnomedicinal practices; these could also be useful bioenergy sources. Keeping in mind the broader aim of looking at future functional foods that are also required to be environmentally sustainable, the current report: (a) reviews the extant literature on underutilized legumes from arid/semi-arid zones, (b) discusses current status with respect to biological activities present therein, and (c) suggests pertinent research questions and solution paths in the domains of bioactives, bioenergy, and sustainable environment.

7.
Mol Divers ; 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37280404

ABSTRACT

The global prevalence of obesity-related systemic disorders, including non-alcoholic fatty liver disease (NAFLD), and cancers are rapidly rising. Several of these disorders involve peroxisome proliferator-activated receptors (PPARs) as one of the key cell signaling pathways. PPARs are nuclear receptors that play a central role in lipid metabolism and glucose homeostasis. They can activate or suppress the genes responsible for inflammation, adipogenesis, and energy balance, making them promising therapeutic targets for treating metabolic disorders. In this study, an attempt has been made to screen novel PPAR pan-agonists from the ZINC database targeting the three PPAR family of receptors (α, γ, ß/δ), using molecular docking and molecular dynamics (MD) simulations. The top scoring five ligands with strong binding affinity against all the three PPAR isoforms were eprosartan, canagliflozin, pralatrexate, sacubitril, olaparib. The ADMET analysis was performed to assess the pharmacokinetic profile of the top 5 molecules. On the basis of ADMET analysis, the top ligand was subjected to MD simulations, and compared with lanifibranor (reference PPAR pan-agonist). Comparatively, the top-scoring ligand showed better protein-ligand complex (PLC) stability with all the PPARs (α, γ, ß/δ). When experimentally tested in in vitro cell culture model of NAFLD, eprosartan showed dose dependent decrease in lipid accumulation and oxidative damage. These outcomes suggest potential PPAR pan-agonist molecules for further experimental validation and pharmacological development, towards treatment of PPAR-mediated metabolic disorders.

8.
Urology ; 179: 101-105, 2023 09.
Article in English | MEDLINE | ID: mdl-37348659

ABSTRACT

OBJECTIVE: To evaluate the clinical and urodynamic variables that may predict the failure of alpha-blockers in primary bladder neck obstruction (PBNO) patients. Alpha-blockers are useful as a treatment option in patients with PBNO. Nonresponders need to undergo bladder neck incision (BNI). Little is known about the predictive factors determining the success of treatment. MATERIALS AND METHODS: This was a retrospective study, spanning over a period of 8 years. PBNO was diagnosed in the presence of a bladder outlet obstruction index (BOOI) >40 with video-urodynamic evidence of obstruction at the bladder neck. The patients were initially managed with alpha-blockers (alfuzosin and tamsulosin) for 3-6 months, and BNI contemplated when pharmacotherapy failed. The patients with upper tract changes managed with upfront BNI or clean intermittent catheterization were excluded. The data for the international prostate symptom score (IPSS), uroflowmetry, urodynamic studies, and ultrasonography of pre and post-treatment periods were reviewed. Treatment outcomes were defined as complete response (>50% improvement in Qmax and IPSS score) and partial response (30%-50% improvement in Qmax and IPSS score) at 3 or 6 months. RESULTS: Ninety-nine patients were analyzed. 21 patients underwent BNI for the failure of medical management and 31 for recurrence of symptoms at a mean follow-up of 18.8 ± 3.5 months (12-70 months). Independent predictors of failure of pharmacotherapy with alpha-blockers were age (P = .021), Pdet@Qmax (P = .015), and BOOI (P = .019). CONCLUSION: Alpha-blockers are more likely to fail in PBNO in younger patients generating higher voiding pressures and BOOI > 60.


Subject(s)
Urinary Bladder Neck Obstruction , Male , Humans , Urinary Bladder Neck Obstruction/drug therapy , Urinary Bladder Neck Obstruction/etiology , Urinary Bladder Neck Obstruction/diagnosis , Retrospective Studies , Urodynamics/physiology , Adrenergic alpha-Antagonists/therapeutic use , Tamsulosin/therapeutic use
9.
J Plant Biochem Biotechnol ; : 1-8, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37359892

ABSTRACT

Climate change has posed a challenge for food security all over the world in the form of fluctuating crop yields and novel disease outbreaks in plants. Human society's overdependence on a few food crops does not seem a wise precedence. There are numerous underutilized/orphan/neglected legumes growing in the Indian desert regions that can come to the rescue and act as balanced and sustainable sources of nutrients and health-benefitting nutraceuticals. However, challenges such as low plant yield, unidentified metabolic pathways and off-flavor in the food products derived from them prevent the realization of their full potential. Conventional breeding techniques are too slow to achieve the desired modifications and cater to the sharply rising demand for functional foods. The novel gene editing tools like CRISPR-Cas provide more precise tool to manipulate the target genes with or without introduction of foreign DNA and therefore, have better chances to be accepted by governments and societies. The current article reports some of the relevant 'gene editing' success stories with respect to nutraceutical and flavor profiles in the popular legumes. It highlights gaps and future potential, along with areas requiring caution, in underutilized edible legumes of the Indian (semi) arid regions like Prosopis cineraria, Acacia senegal and Cyamopsis tetragonoloba.

10.
Front Plant Sci ; 14: 1131173, 2023.
Article in English | MEDLINE | ID: mdl-36968395

ABSTRACT

Introduction: Phenolic phytochemicals are known for antioxidant-mediated pharmacological effects in various diseases (diabetes, cancer, CVDs, obesity, inflammatory and neurodegenerative disorders). However, individual compounds may not exert the same biological potency as in combination with other phytochemicals. Cyamopsis tetragonoloba (Guar), an underutilized semi-arid legume which has been used as a traditional food in Rajasthan (India), is also a source of the important industrial product guar gum. However, studies on its biological activity, like antioxidant, are limited. Methods: We tested the effect of C. tetragonoloba seed extract to enhance the antioxidant activity of well-known dietary flavonoids (quercetin, kaempferol, luteolin, myricetin, and catechin) and non-flavonoid phenolics (caffeic acid, ellagic acid, taxifolin, epigallocatechin gallate (EGCG), and chlorogenic acid) using DPPH radical scavenging assay. The most synergistic combination was further validated for its cytoprotective and anti-lipid peroxidative effects in in vitro cell culture system, at different concentrations of the extract. LC-MS analysis of purified guar extract was also performed. Results and discussion: In most cases, we observed synergy at lower concentrations of the seed extract (0.5-1 mg/ml). The extract concentration of 0.5 mg/ml enhanced the antioxidant activity of Epigallocatechin gallate (20 µg/ml) by 2.07-folds, implicating its potential to act as an antioxidant activity enhancer. This synergistic seed extract-EGCG combination diminished the oxidative stress nearly by double-fold when compared with individual phytochemical treatments in in vitro cell culture. LC-MS analysis of the purified guar extract revealed some previously unreported metabolites, including catechin hydrate, myricetin-3-galactoside, gossypetin-8-glucoside, and puerarin (daidzein-8-C-glucoside) which possibly explains its antioxidant enhancer effect. The outcomes of this study could be used for development of effective nutraceutical/dietary supplements.

11.
Article in English | MEDLINE | ID: mdl-36921914

ABSTRACT

Anthropogenic activities primarily combustion of fossil fuel is the prime cause behind the increased concentration of CO2 into the atmosphere. As a consequence, marine environments are anticipated to experience shift towards lower pH and elevated temperatures. Moreover, since the industrial revolution the growing demand for petroleum-based products has been mounting up worldwide leading to severe oil pollution. Sundarbans estuarine system (SES) is experiencing ocean warming, acidification as well as oil pollution from the last couple of decades. Scylla serrata is one of the most commercially significant species for aquaculture in coastal areas of Sundarbans. Thus, the prime objective of this study is to delineate whether exposure under ocean warming and acidification exacerbates effect of oil spill on oxidative stress of an estuarine crab S. serrata. Animals were separately exposed under current and projected climate change scenario for 30 days. After this half animals of each treatment were exposed to oil spill conditions for 24 h. Oxidative stress status superoxide dismutase (SOD), catalase (CAT), glutathione S-transferase (GST), lipid peroxidation (LPO level) and DNA damage (Comet assay) were measured. Augmented antioxidant and detoxification enzyme activity was noted except for SOD but failed to counteract LPO and DNA damage. The present results clearly highlighted the detrimental combined effect of OWA and pollution on oxidative stress status of crabs that might potentially reduce its population and affect the coastal aquaculture in impending years.


Subject(s)
Brachyura , Petroleum Pollution , Water Pollutants, Chemical , Animals , Brachyura/metabolism , Petroleum Pollution/adverse effects , Hydrogen-Ion Concentration , Ocean Acidification , Seawater , Antioxidants/metabolism , Oxidative Stress , Catalase , Biomarkers/metabolism , Superoxide Dismutase/pharmacology , Lipid Peroxidation , Water Pollutants, Chemical/toxicity
12.
Int J Biometeorol ; 67(1): 121-131, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36323952

ABSTRACT

Both the physical properties of the fabric materials used in clothing and the effective design of the clothing, primarily in terms of the air gap thickness, restrict the transmission of the thermal energy from the heat source to the firefighter's body. The air gap distribution over the body in real deployment conditions of firefighters will vary, and is likely to be different from the air gap distribution in standardised manikin tests in standing upright posture. In this study, we investigated differences in the distribution of air layers in firefighters' clothing in three postures reflecting realistic on-duty exposure conditions (crawling, hose-holding, and standing upright used in laboratory tests) using 3D body scanning technology. The body posture induced substantial changes in the air gap thickness on the upper body (chest and back) and lower body. These changes were reflected in both the thermal and evaporative resistance of the ensemble, and consequently, in their potential thermal performance in the field. Therefore, it is recommended to consider body postures during the evaluation of clothing protective performance. Secondly, the knowledge of local clothing properties in real-life exposure provides a true protection mapping and gives design inputs to improve the local protective properties of firefighters' clothing.


Subject(s)
Firefighters , Humans , Body Temperature Regulation , Posture , Manikins , Clothing , Protective Clothing
13.
Mar Environ Res ; 184: 105850, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36566576

ABSTRACT

Extreme climatic events such as heatwaves are anticipated to intensify in future and impose additional thermal stress to aquatic animals. Knowledge regarding an organism's thermal tolerance or sensitivity is therefore important in determining the effects of fluctuating water temperature on physiological responses. Thus, thermal tolerance tests can serve as a first step in understanding the present and future effects of climate warming. Climatic variability will alter prey-predator attributes differentially and impact their subsequent interactions. The key objective of this study was to compare and decode the stress responses, resistance and vulnerability of two economically important species from Sundarbans estuarine system- Penaeus monodon (prey) and Mystus gulio (predator) subjected to acute thermal challenges such as sudden heatwaves. Both the species were subjected to an increasing thermal ramp of 1°C h-1 from 22°C to 42°C. Organisms were observed continuously throughout the ramping period and changes in the locomotory behaviour were followed until their loss of equilibrium. The digestive tissue samples were dissected out from both M. gulio and P. monodon at every 2°C and also after a recovery period of 48 h. The SOD, CAT, GST, LPO were measured and integrated biomarker response (IBR) was analysed. The results from thermal tolerance maxima estimation, biomarker study, IBR responses indicated more intense stress response in fish M. gulio whereas recovery potential was greater in shrimp P. monodon. Our findings corroborate the 'trophic sensitivity hypothesis' which advocates predators to be less tolerant in aggravated environmental stress than their prey.


Subject(s)
Penaeidae , Animals , Penaeidae/metabolism , Oxidative Stress , Fishes/metabolism , Biomarkers/metabolism , Stress, Physiological , Predatory Behavior
14.
Environ Sci Pollut Res Int ; 30(9): 23213-23224, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36318414

ABSTRACT

Global climate change-induced ocean warming and acidification have complex reverberations on the physiological functioning of marine ectotherms. The Sundarbans estuarine system has been under threat for the past few decades due to natural and anthropogenic disturbances. In recent years, petroleum products' transportation and their usage have increased manifold, which causes accidental oil spills. The mud crab (Scylla serrata) is one of the most commercially exploited species in the Sundarbans. The key objective of this study was to delineate whether rearing under global environmental drivers (ocean acidification and warming) exacerbates the effect of a local driver (oil pollution) on the physiological energetics of mud crab (Scylla serrata) from the Sundarbans estuarine system. Animals were reared separately for 30 days under (a) the current climatic scenario (pH 8.1, 28°C) and (b) the predicted climate change scenario (pH 7.7, 34°C). After rearing for 30 days, 50% of the animals from each treatment were exposed to 5 mg L-1 of marine diesel oil for the next 24 h. Physiological energetics (ingestion rate, absorption rate, respiration rate, excretion rate, and scope for growth), thermal performance, thermal critical maxima (CTmax), acclimation response ratio (ARR), Arrhenius activation energy (AAE), temperature coefficient (Q10), warming tolerance (WT), and thermal safety margin (TSM) were evaluated. Ingestion and absorption rates were significantly reduced, whereas respiration and ammonia excretion rates significantly increased in stressful treatments, resulting in a significantly lower scope for growth. A profound impact on thermal performance was also noticed, leading to a downward shift in CTmax value for stress-acclimated treatment. The present results clearly highlighted the detrimental combined effect of global climatic stressors and pollution on the physiological energetics of crabs that might potentially reduce their population and affect coastal aquaculture in forthcoming years.


Subject(s)
Brachyura , Petroleum Pollution , Animals , Seawater , Hydrogen-Ion Concentration , Ocean Acidification , Global Warming , Temperature , Climate Change , Oceans and Seas
15.
Hum Nutr Metab ; 31: 200179, 2023 Mar.
Article in English | MEDLINE | ID: mdl-38620788

ABSTRACT

The vulnerability of human health is amplified in recent times with global increase in non-communicable diseases (due to lifestyle changes and environmental insults) and infectious diseases (caused by newer pathogens and drug-resistance strains). Clinical management of diseases is further complicated by disease severity caused by other comorbid factors. Drug-based therapy may not be the sole approach, particularly in scenarios like the COVID-19 pandemic, where there is no specific drug against SARS-CoV-2. Nutritional interventions are significant in armouring human populations in disease prevention, and as adjunctive therapy for disease alleviation. Amidst ongoing clinical trials to determine the efficacy of Vit. D against infections and associated complications, this review examines the pleiotropic benefits of nutritional adequacy of vitamin D (Vit. D) in combating viral infections (COVID-19), its severity and complications due to co-morbidities (obesity, diabetes, stroke and Kawasaki disease), based on research findings and clinical studies. Supplements of Vit. D in combination with other nutrients, and drugs, are suggested as promising preventive-health and adjunct-treatment strategies in the clinical management of viral infections with metabolic comorbidities.

16.
Polymers (Basel) ; 14(24)2022 Dec 09.
Article in English | MEDLINE | ID: mdl-36559759

ABSTRACT

Absorption and transportation of moisture from sweat are the crucial properties of the fabrics used in performance clothing. Sweat moisture is a significant factor that may cause discomfort to the wearer. The majority of the injuries and fatalities that happen to the high-risk sector workers in their line of duty may be caused by inadequate comfort provided by the protective uniform. The purpose of this study is to scientifically investigate the sweat drying performance of the different protective fabrics used in high-risk sectors' workers' clothing. Firstly, this study experimentally analyzed the sweat drying of protective fabrics with different attributes under various ambient environments and wearers' internal physiology. Secondly, this study explained the phenomena of sweat drying in protective fabric through the theory of heat and mass transfer. Sweat drying performance of the fabrics used in functional clothing mainly depends on the evaporative resistance regardless of the presence of water and oil repellent coating on the fabric surface. The drying performance increases with the increased wetted area and increased air flow. The wetted area depends on the absorption and wicking properties of the fabrics. The findings of this research will advance the field by developing knowledge on sweat drying performance of fabrics used in protective clothing; in turn, this could provide better comfort and safety to high-risk sectors' workers.

17.
Surg J (N Y) ; 8(3): e179-e186, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35928549

ABSTRACT

Introduction Postoperative surgical site infection (SSI) forms the major burden of nosocomial infections in surgical patients. There is prevalent practice of surgical site hair shaving as a part of preoperative preparation. There is uncertainty regarding the benefit versus harm of shaving for SSIs. Hairs at surgical sites are removed prior to surgery most often by shaving. We performed this study to look for what impact preoperative hair removal by shaving has on postoperative SSI. Methods We performed prospective comparative cohort study in patients undergoing elective abdominal surgeries. We included clean and clean-contaminated surgeries in immunocompetent patients of which half were shaved and other half not shaved prior to surgery. Other confounding factors like skin cleaning, aseptic technique of surgery, antibiotic prophylaxis and treatment, and postoperative wound care were as per care. Patients were assessed for presence and grade of SSI postoperatively on day 7, 14, and 30. Results were analyzed statistically using chi-square and Fischer's exact tests for significance in entire sample as well as in demographic subgroups. Results Overall SSI rate was 11.42%. There was no statistically significant difference in SSI rates between patients who underwent preoperative surgical site hair removal by shaving (232) and who did not have shaving (232) on all the three different assessment timelines in postoperative period, namely, day 7, 14, and 30. Although the absolute number of patients who had SSI was more in those who underwent preoperative surgical site hair removal by shaving, the difference was not statistically significant ( p > 0.05). But on subgroup analysis patients with clean-contaminated surgeries ( p = 0.037) and patients with surgeries lasting for less than 2 hours (Fischer's exact = 0.034) had significantly higher SSI in the shaved group compared with unshaved on day 14. Conclusion As per our results, preoperative shaving did not significantly increase overall SSI except in subgroup of clean-contaminated surgeries and in surgeries of less than 2 hours' duration. So especially in these patients avoiding preoperative surgical site hair shaving may be used as one of the infection control measures.

18.
Comput Biol Med ; 147: 105796, 2022 08.
Article in English | MEDLINE | ID: mdl-35809408

ABSTRACT

Obesity is an abnormal fat accumulation disorder in the metabolic syndrome constellation, and a risk factor for diabetes, cardiovascular disorders, non-alcoholic fatty liver disease (NAFLD), and cancer. Nuclear receptors (Peroxisome proliferator-activated receptor, PPAR) are implicated in metabolic syndrome and NAFLD, and have potential for therapeutic targeting. Nuclear receptors are ligand-dependent transcription factors that have diverse roles in metabolism, including regulating genes involved in lipid and glucose metabolism, modulating inflammatory genes, and are crucial for maintaining metabolic flexibility. PPAR activates adipose triglyceride lipase, which then releases fatty acids as ligands for PPAR, indicating the interdependency of nuclear receptors and lipases. Here, molecular docking was performed with selected phytochemical ligands that can bind with PPAR-α/γ (PDB ID: 2ZNN and 2ATH, respectively) using Glide module of Schrodinger software followed by molecular dynamics simulation study using Desmond module, and ADMET analysis. Interestingly, orlistat which is a well-known lipase and fatty acid synthase inhibitor also demonstrated favorable binding affinity with both PPAR-α/γ (-10.96 kcal/mol against PPARα and -10.26 kcal/mol against PPARγ). The highest docking scores were however shown by the flavonoids - rutin (-14.88 kcal/mol against PPARα and -13.64 kcal/mol against PPARγ), and its aglycone, quercetin (-10.08 kcal/mol in PPARα and -9.89 kcal/mol in PPARγ). The other phytochemicals (genistein, esculin, daidzin, naringenin, daidzein, dihydroxy coumarin, hydroquinone) showed lower binding affinity as dual agonists. The anti-obesity effects were experimentally validated in cultured adipocytes, which revealed better lipid inhibition by rutin and quercetin than orlistat (quercetin > rutin > orlistat) pointing to their strong potential in anti-obesity treatment.


Subject(s)
Anti-Obesity Agents , Metabolic Syndrome , Non-alcoholic Fatty Liver Disease , Anti-Obesity Agents/pharmacology , Anti-Obesity Agents/therapeutic use , Humans , Ligands , Lipids , Molecular Docking Simulation , Obesity/drug therapy , Orlistat/pharmacology , PPAR alpha/chemistry , PPAR alpha/metabolism , PPAR gamma/chemistry , PPAR gamma/metabolism , Phytochemicals/pharmacology , Quercetin , Rutin/pharmacology
19.
PLoS One ; 17(6): e0265664, 2022.
Article in English | MEDLINE | ID: mdl-35657954

ABSTRACT

A space-dependent mortality assay was performed on thirty-one short-horned adult grasshopper species (Acridoidea: Orthoptera) to estimate the space required for mass culture of acridids in captivity. Our findings show that acridids have a multidimensional mortality mode at different densities. The correlations between density and mortality of acridids in rearing units follow a sigmoidal curve. Acridid mortality significantly increases with individual numbers up to a threshold, after which mortality does not change even if the density increases further. A log-logistic sigmoidal function expresses the dose (density)-response (mortality) relationship in the majority of acridid species. Mortality of acridids at variable densities does not necessarily correspond with the body-mass of the insects, indicating that mortality is a body-mass independent event. As a ready reference, a utility chart has been prepared, providing the necessary conversion factor for estimating space for a given number of acridids. The present information will be helpful for commercial grasshopper farming in captivity.


Subject(s)
Grasshoppers , Orthoptera , Animals , Popular Culture
20.
Polymers (Basel) ; 14(2)2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35054702

ABSTRACT

More than 60,000 firefighters' injuries were reported by the National Fire Protection Association in the U.S. in 2019. Inadequate protection by bunker gear could be a reason for most of the injuries. Firefighters repeatedly encounter thermal hazards due to their job responsibilities. Degradation could occur on bunker gear fabric during thermal exposure. It has been found that the presence of moisture affects performance as well, which may come from wearers' sweat. Proper evaluation of the tensile strength of the fabrics used in bunker gear could provide information essential for maintenance the overall integrity of the gear. An evaluation of the tensile strength of fabrics when exposed to 10, 15, and 20 kW/m2 radiant heat flux in the presence of moisture is reported. In each fabric system, a total of sixty-four different samples were prepared for four different types of fabric and four levels of moisture which were exposed to three different radiant heat flux for five minutes. Heat flux and moisture levels have significant impact on tensile strength. The effect of moisture on tensile strength in a three-layered fabric system is higher than that for a single layer fabric. An understanding of the impact of heat and moisture on fabric strength has been achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...