Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; : e202401617, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38788130

ABSTRACT

A magnetically isolable iron oxide nanoparticles is introduced as an efficient heterogeneous photocatalyst for non-directed C‒H arylation employing aryl diazonium salts as the aryl precursors. This first-row transition metal-based photocatalyst revealed versatile activities and is applicable to a wide range of substrates, demonstrating brilliant efficacy and superior recyclability. Detailed catalytic characterization describes the physical properties and redox behavior of the Fe-catalyst. Adequate control experiments helped to establish the radical-based mechanism for the C‒H arylation.

2.
Chemistry ; 30(20): e202304002, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38290995

ABSTRACT

A divergent synthetic approach to access highly substituted indole scaffolds is illustrated. By virtue of a tunable electrochemical strategy, distinct control over the C-3 substitution pattern was achieved by employing two analogous 2-styrylaniline precursors. The chemoselectivity is governed by the fine-tuning of the acidity of the amide proton, relying on the appropriate selection of N-protecting groups, and assisted by the reactivity of the electrogenerated intermediates. Detailed mechanistic investigations based on cyclic voltametric experiments and computational studies revealed the crucial role of water additive, which assists the proton-coupled electron transfer event for highly acidic amide precursors, followed by an energetically favorable intramolecular C-N coupling, causing exclusive fabrication of the C-3 unsubstituted indoles. Alternatively, the implementation of an electrogenerated cationic olefin activator delivers the C-3 substituted indoles through the preferential nucleophilic nature of the N-acyl amides. This electrochemical approach of judicious selection of N-protecting groups to regulate pKa/E° provides an expansion in the domain of switchable generation of heterocyclic derivatives in a sustainable fashion, with high regio- and chemoselectivity.

3.
Org Lett ; 25(42): 7727-7732, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37844302

ABSTRACT

An electron donor-acceptor (EDA)-triggered hydrogen atom transfer (HAT) process is developed for the efficient generation of an α-alkoxy radical from cyclic ethers to synthesize exocyclic alkenylated ethers with exclusive E-selectivity. A judiciously chosen donor-acceptor pair (DABCO and maleimide) serves as the desired HAT reagent under visible light irradiation without using any photocatalyst or peroxide. A wide variety of substrates were explored to demonstrate the diverse applicability and practical viability of this cross-dehydrogenative transformation. Detailed mechanistic studies revealed a radical reaction pathway under the oxidative environment.

4.
Org Lett ; 24(45): 8452-8457, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36342386

ABSTRACT

An efficient approach for the synthesis of phenanthrene scaffolds by utilizing the dual catalytic activity of an organo-photocatalyst is documented. The controlled cascade transformation proceeds via in situ diazotization followed by olefin isomerization and subsequent arene radical generation through photoreduction. The overall process demonstrates both the photosensitization and photoredox properties of a single organo-photocatalyst and facilitates the desired intramolecular annulation with high precision and efficacy. In this context, the underexplored organocatalyst acridine orange base is employed and the photophysical interactions between the catalyst and the substrates along with the detailed reaction kinetics are documented.


Subject(s)
Light , Phenanthrenes , Oxidation-Reduction , Catalysis , Alkenes/chemistry , Phenanthrenes/chemistry
5.
Chem Asian J ; 15(5): 568-572, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32017417

ABSTRACT

An organophotoredox catalyzed efficient and robust approach for the synthesis of highly important 3-alkyl substituted chroman-4-one scaffold is developed using visible light induced radical cascade cyclization strategy. The reaction is initiated through the generation of alkyl radicals from N-(acyloxy)phthalimides under photoredox conditions, which subsequently undergo intermolecular cascade radical cyclization on 2-(allyloxy)arylaldehydes to afford chroman-4-one scaffolds. The presented strategy is attractive with regard to mild reaction conditions, operational simplicity, high functional group tolerance and broad substrate scope.

SELECTION OF CITATIONS
SEARCH DETAIL
...