Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Lett ; 49(8): 2193-2196, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621109

ABSTRACT

Photonic-assisted signal processing of high-bandwidth signals emerges as a solution for challenges encountered in electronic-based processing. Here we present a concept for a compact, photonic-assisted digital-to-analog converter (DAC) and optical IQ-modulator in one single integrated device based on two innovative concepts: a segmented Mach-Zehnder modulator and orthogonal sampling. For electrically driving the modulator, only a single radio frequency oscillator and no pulse source or electrical DAC are required. The presented and simulated proof-of-concept device with six segments can generate a multi-level and high-bandwidth signal from low-bandwidth electronic drivers; e.g., we show the generation of a 120 Gbps data rate, 16-quadrature amplitude modulation (16-QAM, 30 Gbaud) signal solely based on low-bandwidth (5 GHz) non-return-to-zero (NRZ) signals. Integrated on a silicon photonic platform, the device provides fixable speed and bandwidth operations, positioning it as a viable solution for diverse communication systems.

2.
Opt Lett ; 44(2): 307-310, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30644887

ABSTRACT

We present a laser phase noise (PN) induced effect of a phase-modulation-to-intensity-modulation conversion noise and noise pedestals underneath each of the orthogonal frequency division multiplexing (OFDM) subcarriers in a self-coherent optical OFDM transmission using a self-homodyne technique. We provide a statistical analysis on the received symbols using a histogram to demonstrate the effect of a phase rotation term and inter-subcarrier interference individually and collectively. The PN is then compensated using a simple time delay to realign the phase walk-off of the subcarriers relative to the carrier. Significant quadrature improvements of 6.82 dB using 5 MHz laser linewidth over a 720 km transmission length and 5.38 dB using 20 MHz over 240 km have been obtained with 16 quadrature amplitude modulation (QAM) over 15 GHz OFDM signal bandwidth. The technique also significantly reduced an optical-signal-to-noise ratio requirement at the bit error rate of 1×10-3 by 16.15 dB for 64-QAM over 160 km. With the delay, the system can tolerate three times the chromatic dispersion-length product.

SELECTION OF CITATIONS
SEARCH DETAIL
...