Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Assay Drug Dev Technol ; 16(4): 212-221, 2018.
Article in English | MEDLINE | ID: mdl-29870274

ABSTRACT

Antibiotic-resistant infections that do not respond to available drugs are becoming more common. Methicillin-resistant Staphylococcus aureus, carbapenem-resistant enterobacteria ("superbugs"), and many others pose a continuous threat to public health. To provide tools to combat such deadly infections, we present in this study a homogeneous assay focused on an insufficiently addressed molecular interaction linked to ribosomal translation. We show that a fluorescence resonance energy transfer (FRET) based screening assay can identify antibiotic molecules that inhibit ternary complex (EF-Tu:tRNA:GTP complex) formation, and therefore, protein synthesis in bacteria. Specifically engineered Escherichia coli EF-Tu and tRNAPhe are used to prepare two key components of this assay: (1) Cy5-EF-Tu:GTP and (2) Cy3-Phe-tRNAPhe. When mixed and Cy3 is excited at 532 nm, increased Cy5 fluorescence intensity is observed at 665 nm due to ternary complex formation and FRET. If the same assay is carried out in presence of an inhibitor, such as GE2270A (a known inhibitor of the EF-Tu-tRNA interaction), fluorescence intensity is significantly diminished. To establish proof of principle and to show the adaptability of this assay to high throughput screening (HTS), we analyzed the effect of different classes of antibiotics, including beta-lactams, quinolone compounds, and protein synthesis inhibitors, on fluorescence. The assay was done in a 96-well microplate. We observed inhibition by GE2270A, and no effect of nineteen other tested antibiotics, confirming the ability of this FRET assay to serve as a screen for potential inhibitor molecules of ternary complex formation from libraries of compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli Proteins/biosynthesis , Escherichia coli/drug effects , Fluorescence Resonance Energy Transfer , Peptide Elongation Factor Tu/genetics , Protein Biosynthesis/drug effects , Protein Engineering , RNA, Transfer/genetics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Escherichia coli/metabolism , Microbial Sensitivity Tests , Peptide Elongation Factor Tu/isolation & purification , Peptide Elongation Factor Tu/metabolism , RNA, Transfer/chemistry , RNA, Transfer/isolation & purification
2.
J Pathol Inform ; 9: 9, 2018.
Article in English | MEDLINE | ID: mdl-29692946

ABSTRACT

BACKGROUND: The tagging system is based on a small, electronic, wireless, laser-light-activated microtransponder named "p-Chip." The p-Chip is a silicon integrated circuit, the size of which is 600 µm × 600 µm × 100 µm. Each p-Chip contains a unique identification code stored within its electronic memory that can be retrieved with a custom reader. These features allow the p-Chip to be used as an unobtrusive and scarcely noticeable ID tag on glass slides and tissue cassettes. METHODS: The system is comprised of p-Chip-tagged sample carriers, a dedicated benchtop p-Chip ID reader that can accommodate both objects, and an additional reader (the Wand), with an adapter for reading IDs of glass slides stored vertically in drawers. On slides, p-Chips are attached with adhesive to the center of the short edge, and on cassettes - embedded directly into the plastic. ID readout is performed by bringing the reader to the proximity of the chip. Standard histopathology laboratory protocols were used for testing. RESULTS: Very good ID reading efficiency was observed for both glass slides and cassettes. When processed slides are stored in vertical filing drawers, p-Chips remain readable without the need to remove them from the storage location, thereby improving the speed of searches in collections. On the cassettes, the ID continues to be readable through a thin layer of paraffin. Both slides and tissue cassettes can be read with the same reader, reducing the need for redundant equipment. CONCLUSIONS: The p-Chip is stable to all chemical challenges commonly used in the histopathology laboratory, tolerates temperature extremes, and remains durable in long-term storage. The technology is compatible with laboratory information management systems software systems. The p-Chip system is very well suited for identification of glass slides and cassettes in the histopathology laboratory.

3.
Biopreserv Biobank ; 15(4): 293-304, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28398809

ABSTRACT

A system has been developed to electronically tag and track test tubes used in biorepositories. The system is based on a light-activated microtransponder, also known as a "p-Chip." One of the pressing problems with storing and retrieving biological samples at low temperatures is the difficulty of reliably reading the identification (ID) number that links each storage tube with the database containing sample details. Commonly used barcodes are not always reliable at low temperatures because of poor adhesion of the label to the test tube and problems with reading under conditions of frost and ice accumulation. Traditional radio frequency identification (RFID) tags are not cost effective and are too large for this application. The system described herein consists of the p-Chip, p-Chip-tagged test tubes, two ID readers (for single tubes or for racks of tubes), and software. We also describe a robot that is configured for retrofitting legacy test tubes in biorepositories with p-Chips while maintaining the temperature of the sample below -50°C at all times. The main benefits of the p-Chip over other RFID devices are its small size (600 × 600 × 100 µm) that allows even very small tubes or vials to be tagged, low cost due to the chip's unitary construction, durability, and the ability to read the ID through frost and ice.


Subject(s)
Biological Specimen Banks , Computer Peripherals/standards , Specimen Handling/instrumentation , Computer Peripherals/economics , Radio Frequency Identification Device/economics , Radio Frequency Identification Device/standards , Robotics , Software , Specimen Handling/standards , Temperature
4.
Biomed Microdevices ; 18(6): 100, 2016 12.
Article in English | MEDLINE | ID: mdl-27787762

ABSTRACT

Collecting information about biochemical processes occurring inside a single cell or embryo is traditionally done either using fluorescent dyes with microscopy or via microelectrode voltage-clamp techniques. This paper demonstrates that a more direct method - transmission of information using an electronic chip implanted in an embryo - is feasible. A light-activated microtransponder with dimensions 250 µm × 250 µm × 100 µm (a "p-Chip") was implanted into a blastula-stage frog (Xenopus laevis) embryo. To implant the chip, a small slit is made in the blastocoel roof with an electrolytically-sharpened tungsten needle, and the p-Chip is inserted using fine forceps. The chip is activated when illuminated by a 60 mW focused laser beam, which causes the p-Chip to send its numeric ID to a nearby receiver. At no time during signal transmission does a wire or other type of object come in contact with or penetrate the epidermal layer covering the p-Chip. The embryo survives the procedure, extruding the chip after approximately 3 h. The method shows promise for studies including voltage potential, pH and other parameters.


Subject(s)
Electrical Equipment and Supplies , Embryo, Nonmammalian/metabolism , Xenopus laevis/embryology , Animals , Blastocyst , Embryo, Nonmammalian/cytology , Materials Testing
5.
Methods Appl Fluoresc ; 4(4): 047002, 2016 12 13.
Article in English | MEDLINE | ID: mdl-28192309

ABSTRACT

An oligopeptide: Lys-Gly-Pro-Arg-Ser-Leu-Ser-Gly-Lys-NH2, cleaved specifically by a matrix metalloproteinase 9 (MMP-9) at the Ser-Leu bond, was labeled on the ε-NH2 groups of lysine with donor (5, 6 TAMRA) and acceptor (HiLyte647) dye. The donor control was a peptide labeled with 5, 6 TAMRA only on the C-terminal lysine, and the acceptor control was free HiLyte647. Following three products were studied by dissolving in 10% (w/w) poly(vinyl alcohol) and dried on glass slides forming 200 micron films. Absorption spectra of the films show full additivity of donor and acceptor absorptions. A strong Fluorescence Resonance Energy Transfer (FRET) with an efficiency of about 85% was observed in the fluorescence emission and excitation spectra. The lifetime of the donor was shorter and heterogeneous compared with the donor control.


Subject(s)
Fluorescence Resonance Energy Transfer , Amino Acid Sequence , Fluorescent Dyes , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 7 , Matrix Metalloproteinase 9 , Oligopeptides , Peptide Fragments , Peptides
6.
PLoS One ; 10(4): e0122249, 2015.
Article in English | MEDLINE | ID: mdl-25853582

ABSTRACT

BACKGROUND: Prostate cancer (PCa) is the most common malignancy among men in the United States. Though highly sensitive, the often-used prostate-specific antigen (PSA) test has low specificity which leads to overdiagnosis and overtreatment of PCa. This paper presents results of a retrospective study that indicates that testing for macrophage inhibitory cytokine 1 (MIC-1) concentration along with the PSA assay could provide much improved specificity to the assay. METHODS: The MIC-1 serum level was determined by a novel p-Chip-based immunoassay run on 70 retrospective samples. The assay was configured on p-Chips, small integrated circuits (IC) capable of storing in their electronic memories a serial number to identify the molecular probe immobilized on its surface. The distribution of MIC-1 and pre-determined PSA concentrations were displayed in a 2D plot and the predictive power of the dual MIC-1/PSA assay was analyzed. RESULTS: MIC-1 concentration in serum was elevated in PCa patients (1.44 ng/ml) compared to normal and biopsy-negative individuals (0.93 ng/ml and 0.88 ng/ml, respectively). In addition, the MIC-1 level was correlated with the progression of PCa. The area under the receiver operator curve (AUC-ROC) was 0.81 providing an assay sensitivity of 83.3% and specificity of 60.7% by using a cutoff of 0.494 for the logistic regression value of MIC-1 and PSA. Another approach, by defining high-frequency PCa zones in a two-dimensional plot, resulted in assay sensitivity of 78.6% and specificity of 89.3%. CONCLUSIONS: The analysis based on correlation of MIC-1 and PSA concentrations in serum with the patient PCa status improved the specificity of PCa diagnosis without compromising the high sensitivity of the PSA test alone and has potential for PCa prognosis for patient therapy strategies.


Subject(s)
Biomarkers, Tumor/blood , Growth Differentiation Factor 15/blood , Prostate-Specific Antigen/blood , Prostatic Neoplasms/blood , Aged , Biopsy , Disease Progression , Humans , Male , Middle Aged , Prognosis , Prostatic Neoplasms/pathology , Retrospective Studies
7.
ACS Chem Biol ; 9(10): 2421-31, 2014 Oct 17.
Article in English | MEDLINE | ID: mdl-25126896

ABSTRACT

The universally conserved translation elongation factor EF-Tu delivers aminoacyl(aa)-tRNA in the form of an aa-tRNA·EF-Tu·GTP ternary complex (TC) to the ribosome where it binds to the cognate mRNA codon within the ribosomal A-site, leading to formation of a pretranslocation (PRE) complex. Here we describe preparation of QSY9 and Cy5 derivatives of the variant E348C-EF-Tu that are functional in translation elongation. Together with fluorophore derivatives of aa-tRNA and of ribosomal protein L11, located within the GTPase associated center (GAC), these labeled EF-Tus allow development of two new FRET assays that permit the dynamics of distance changes between EF-Tu and both L11 (Tu-L11 assay) and aa-tRNA (Tu-tRNA assay) to be determined during the decoding process. We use these assays to examine: (i) the relative rates of EF-Tu movement away from the GAC and from aa-tRNA during decoding, (ii) the effects of the misreading-inducing antibiotics streptomycin and paromomycin on tRNA selection at the A-site, and (iii) how strengthening the binding of aa-tRNA to EF-Tu affects the rate of EF-Tu movement away from L11 on the ribosome. These FRET assays have the potential to be adapted for high throughput screening of ribosomal antibiotics.


Subject(s)
Peptide Elongation Factor Tu/metabolism , Protein Biosynthesis/physiology , RNA, Transfer, Amino Acyl/chemistry , Ribosomal Proteins/metabolism , Ribosomes/physiology , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/metabolism , Guanosine Triphosphate/metabolism , Kinetics , Models, Molecular , Mutation/genetics , Peptide Elongation Factor Tu/chemistry , Peptide Elongation Factor Tu/genetics , Protein Conformation , RNA, Transfer, Amino Acyl/metabolism
8.
Protein Eng Des Sel ; 26(5): 347-57, 2013 May.
Article in English | MEDLINE | ID: mdl-23447652

ABSTRACT

Formation of the ternary complex between GTP-bound form of elongation factor Tu (EF-Tu) and aminoacylated transfer RNA (aa-tRNA) is a key event in protein biosynthesis. Here we show that fluorescently modified Escherichia coli EF-Tu carrying three mutations, C137A, C255V and E348C, and fluorescently modified Phe-tRNA(Phe) form functionally active ternary complex that has properties similar to those of the naturally occurring (unmodified) complex. Similarities include the binding and binding rate constants, behavior in gel retardation assay, as well as activities in tRNA protection and in vitro translation assays. Proper labeling of EF-Tu was demonstrated in MALDI mass spectroscopy experiments. To generate the mutant EF-Tu, a series of genetic constructions were performed. Two native cysteine residues in the wild-type EF-Tu at positions 137 and 255 were replaced by Ala and Val, respectively, and an additional cysteine was introduced either in position 324 or 348. The assembly FRET assay showed a 5- to 7-fold increase of Cy5-labeled EF-Tu E348C mutant fluorescence upon formation of ternary complex with charged tRNA(Phe)(Cy3-labeled) when the complex was excited at 532 nm and monitored at 665 nm. In a control experiment, we did not observe FRET using uncharged tRNA(Phe)(Cy3), nor with wild-type EF-Tu preparation that was allowed to react with Cy5 maleimide, nor in the absence of GTP. The results obtained demonstrate that the EF-Tu:tRNA FRET system described can be used for investigations of ribosomal translation in many types of experiments.


Subject(s)
Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Fluorescence Resonance Energy Transfer/methods , Peptide Elongation Factor Tu/metabolism , RNA, Transfer/metabolism , Ribosomes/metabolism , Amino Acid Sequence , Escherichia coli/genetics , Escherichia coli Proteins/analysis , Escherichia coli Proteins/genetics , Models, Molecular , Molecular Sequence Data , Mutation , Peptide Elongation Factor Tu/analysis , Peptide Elongation Factor Tu/genetics , Protein Biosynthesis , RNA, Transfer/analysis , RNA, Transfer/genetics , Ribosomes/genetics
9.
Anal Bioanal Chem ; 404(8): 2223-31, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22960796

ABSTRACT

Microtransponders (RFID p-Chips) derivatized with silver island film (SIF) have previously seen success as a platform for the quantification of low-abundance biomolecules in nucleic acid based assays and immunoassays. In this study, we further characterized the morphology of the SIF as well as the polymer matrix enveloping it by scanning electron microscopy (SEM). The polymer was a two-layer silane-based matrix engulfing the p-Chip and SIF. Through a series of SEM and confocal fluorescence microscopy experiments, we found the depth of the polymer matrix to be 1-2 µm. The radiative effects of the SIF/polymer layer were assessed by fluorescence lifetime imaging (FLIM) of p-Chips coated with the polymer to which a fluorophore (Alexa Fluor 555) was conjugated. FLIM images showed an 8.7-fold increase in fluorescence intensity and an increased rate of radiative decay, the latter of which is associated with improved photostability and both of which are linked to plasmonic enhancement by the SIF. Plasmonic enhancement was found to extend uniformly across the p-Chip and, interestingly, to a depth of about 1.2 µm. The substantial depth of enhancement suggests that the SIF/polymer layer constitutes a three-dimensional matrix that is accessible to solvent and small molecules such as fluorescent dyes. Finally, we confirmed that no surface-enhanced Raman scattering is seen from the SIF/polymer combination. The analysis provides a possible mechanism by which the SIF/polymer-coated p-Chips allow a highly sensitive immunoassay and, as a result, leads to an improved bioassay platform.


Subject(s)
Biological Assay/instrumentation , Radio Frequency Identification Device , Silver/chemistry , Fluorescence , Immunoassay , Microscopy, Electron, Scanning , Polymers/chemistry , Surface Plasmon Resonance , Surface Properties
10.
ACS Nano ; 5(1): 399-407, 2011 Jan 25.
Article in English | MEDLINE | ID: mdl-21158483

ABSTRACT

Metal-enhanced fluorescence (MEF) increased total photon emission of Cy3- and Cy5-labeled ribosomal initiation complexes near 50 nm silver particles 4- and 5.5-fold, respectively. Fluorescence intensity fluctuations above shot noise, at 0.1-5 Hz, were greater on silver particles. Overall signal-to-noise ratio was similar or slightly improved near the particles. Proximity to silver particles did not compromise ribosome function, as measured by codon-dependent binding of fluorescent tRNA, dynamics of fluorescence resonance energy transfer between adjacent tRNAs in the ribosome, and tRNA translocation induced by elongation factor G.


Subject(s)
Fluorescence Resonance Energy Transfer , Metal Nanoparticles/chemistry , Protein Biosynthesis , Silver/chemistry , Base Sequence , Carbocyanines/chemistry , Colloids , Photobleaching , Photons , RNA, Messenger/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Ribosomes/metabolism
11.
Anal Bioanal Chem ; 398(5): 1993-2001, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20798932

ABSTRACT

The aim of this study is to improve assay sensitivity in common solid-phase bioassay configurations as the result of using silver nanoparticles. The solid phase was provided by numerically indexed, silicon-based electronic chips, microtransponders (p-Chips) that have previously been used in multiplexed assays. Assay configurations investigated included an ELISA-type immunoassay and a DNA hybridization assay. The surface of p-Chips was derivatized with the silver island film (SIF) and a polymer, and then characterized with AFM and SEM. Silver nanoparticle sizes were in the range of 100 to 200 nm. Four fluorophores were tested for fluorescence enhancement; namely, green fluorescent protein, phycoerythrin, Cy3 and Alexa Fluor 555. We consistently observed significant fluorescence enhancement and sensitivity improvement in the p-Chip-based assays: the sensitivity in the cytokine IL-6 immunoassay was 4.3 pg/ml, which represented a 25-fold increase over the method not involving a SIF; and 50 pM in the hybridization assay, a 38-fold increase. The greatest enhancement was obtained for p-Chip surfaces derivatized first with the polymer and then coated with SIF. In conclusion, we show that the SIF-p-Chip-based platform is a highly sensitive method to quantify low-abundance biomolecules in nucleic acid-based assays and immunoassays.


Subject(s)
Immunoassay/methods , Metal Nanoparticles/chemistry , Silver/chemistry , Electronics/instrumentation , Fluorescent Dyes , Limit of Detection , Microscopy, Atomic Force
12.
Protein Eng Des Sel ; 23(3): 129-36, 2010 Mar.
Article in English | MEDLINE | ID: mdl-20083494

ABSTRACT

Here we describe the design, preparation and characterization of 10 EF-Tu mutants of potential utility for the study of Escherichia coli elongation factor Tu (EF-Tu) interaction with tRNA by a fluorescence resonance energy transfer assay. Each mutant contains a single cysteine residue at positions in EF-Tu that are proximal to tRNA sites within the aminoacyl-tRNA.EF-Tu.GTP ternary complex that have previously been labeled with fluorophores. These positions fall in the 323-326 and 344-348 regions of EF-Tu, and at the C terminus. The EF-Tus were isolated as N-terminal fusions to glutathione S-transferase (GST), which was cleaved to yield intact EF-Tus. The mutant EF-Tus were tested for binding to GDP, binding to tRNA in gel retardation and protection assays, and activity in poly-U translation in vitro. The results indicate that at least three EF-Tu mutants, K324C, G325C and E348C, are suitable for further studies. Remarkably, GST fusions that were not cleaved were also active in the various assays, despite the N-terminal fusion.


Subject(s)
Escherichia coli/enzymology , Fluorescence Resonance Energy Transfer , Mutant Proteins/metabolism , Peptide Elongation Factor Tu/genetics , Peptide Elongation Factor Tu/metabolism , Protein Engineering , RNA, Transfer/metabolism , Binding Sites , Electrophoretic Mobility Shift Assay , Escherichia coli/genetics , Factor Xa/metabolism , Guanosine Diphosphate/metabolism , Hydrolysis , Models, Molecular , Mutagenesis, Site-Directed , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/isolation & purification , Mutation , Nucleic Acid Conformation , Peptide Elongation Factor Tu/chemistry , Peptide Elongation Factor Tu/isolation & purification , Peptides/metabolism , Protein Conformation , RNA, Transfer/chemistry , Sequence Analysis, DNA , Staining and Labeling
13.
J Am Assoc Lab Anim Sci ; 49(6): 826-31, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21205448

ABSTRACT

The mouse is the most commonly used laboratory animal, accounting for up to 80% of all mammals used in research studies. Because rodents generally are group-housed, an efficient system of uniquely identifying individual animals for use in research studies, breeding, and proper colony management is required. Several temporary and permanent methods (for example, ear punching and toe clipping) are available for labeling research mice and other small animals, each with advantages and disadvantages. This report describes a new radiofrequency identification tagging method that uses 500-µm, light-activated microtransponders implanted subcutaneously into the ear or tail of mice. The preferred location for implanting is in the side of the tail, because implantation at this site was simple to perform and was associated with shorter implantation times (average, 53 versus 325 s) and a higher success rate (98% versus 50%) compared with the ear. The main benefits of using light-activated microtransponders over other identification methods, including other radiofrequency identification tags, is their small size, which minimizes stress to the animals during implantation and low cost due to their one-piece (monolithic) design. In addition, the implantation procedure uses a custom-designed 21-gauge needle injector and does not require anesthetization of the mice. We conclude that this method allows improved identification and management of laboratory mice.


Subject(s)
Animal Identification Systems/methods , Mice , Radio Frequency Identification Device/methods , Animal Identification Systems/economics , Animals , Animals, Laboratory/surgery , Mice, Inbred BALB C , Mice, Inbred C57BL , Radio Frequency Identification Device/economics
14.
Clin Chem ; 53(7): 1372-6, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17510306

ABSTRACT

BACKGROUND: We developed and evaluated a genotyping assay for detection of 50 cystic fibrosis (CF) mutations. The assay is based on small (500 microm) electronic chips, radio frequency (RF) microtransponders (MTPs). The chips are analyzed on a unique fluorescence and RF readout instrument. METHODS: We divided the CF assay into 4 panels: core, Hispanic, African-American, and Caucasian. We amplified 18 CF transmembrane regulator (CFTR) DNA fragments covering 50 mutations by use of multiplex PCR using 18 CFTR gene-specific primer pairs. PCR was followed by multiplex allele-specific primer extension (ASPE) reactions and hybridization to capture probes synthesized on MTPs. We used 100 ASPE primers and 100 capture probes. We performed fluorescence measurements of hybridized MTP kits and assay analysis using a custom automated bench-top flow instrument. RESULTS: We validated the system by performing the assay on 23 commercial DNA samples in an internal study and 32 DNA samples in an external study. For internal and external studies, correct calls were 98.8% and 95.7%, false-positive calls 1.1% and 3.9%, and false-negative calls 0.12% and 0.36%, respectively. CONCLUSIONS: The MTP-based multiplex assay and analysis platform can be used for CF genotyping.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Black or African American , Electronics/instrumentation , Genotype , Hispanic or Latino , Humans , Microchip Analytical Procedures , Mutation , Polymerase Chain Reaction , White People
15.
Cytometry A ; 69(11): 1097-105, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17051582

ABSTRACT

BACKGROUND: An electronic radio frequency (RF) microchip, the microtransponder (MTP), has been developed as a platform for assays in the fields of genomics and proteomics. Upon activation by light, each MTP provides a unique RF identification (ID) signal that matches a chip to the specific biological material attached to it. The MTP is powered by a photocell and has an antenna that transmits the signal. The aim of the present study was to explore utility of MTPs as a platform for cell growth in cytotoxicity assays. METHODS: The MCF-7, MCF-116, A549, or T-24 cells growing on MTPs placed in petri dishes or slide chambers were cultured untreated or exposed to antitumor drugs topotecan, mitoxantrone, or onconase for up to 4 days. Their attachment to- and growth on- MTPs was assessed by fluorescence microscopy and laser scanning cytometry (LSC) and compared with growth on the dish surface in the MTP neighborhood. The MTPs were fixed in ethanol, stained with propidium iodide (PI), and interrogated in flow in the instrument capable to rapidly (up to 103 MTPs/s) identify their ID signal and measure fluorescence. RESULTS: The cells plated on MTPs exhibited similar attachment properties to those plated in culture dishes. When measured by LSC, they had similar mitotic activity, growth rate, and cell cycle distributions as the cells adhering to the culture dish in the neighborhood of MTPs. The fluorescence intensity of MTPs provided information about the cell number per MTP, which made it possible to assess cell growth rate and monitor the cytostatic/cytotoxic effects of the tested drugs. CONCLUSIONS: The MTP-based system holds promise for the multiplexed cell assays in which numerous different cell lines can be screened for their growth rate or sensitivity while exposed to particular agents in the same vessel. Other advantages of the system are the rapidity of the screening and a very large number of ID codes. Because many cell lines/types can be assayed in a single dish, the system also offers cost savings on tissue culture reagents.


Subject(s)
Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor/instrumentation , Electronics/instrumentation , Lab-On-A-Chip Devices , Laser Scanning Cytometry/instrumentation , Adenocarcinoma/pathology , Breast Neoplasms/pathology , Carcinoma, Transitional Cell/pathology , Cell Culture Techniques/methods , Cell Line, Tumor , Cost Control , Drug Screening Assays, Antitumor/economics , Drug Screening Assays, Antitumor/methods , Electronics/methods , Humans , Laser Scanning Cytometry/methods , Lung Neoplasms/pathology , Microchip Analytical Procedures/methods , Microscopy, Fluorescence , Mitoxantrone/pharmacology , Radio Waves , Ribonucleases/pharmacology , Topotecan/pharmacology
16.
Gene ; 343(1): 127-32, 2004 Dec 08.
Article in English | MEDLINE | ID: mdl-15563838

ABSTRACT

Previously published experiments had indicated unexpected expression of a control vector in which a beta-galactosidase reporter was in the +1 reading frame relative to the translation start. This control vector contained the codon pair CCC CGA in the zero reading frame, raising the possibility that ribosomes rephased on this sequence, with peptidyl-tRNA(Pro) pairing with CCC in the +1 frame. This putative rephasing might also be exacerbated by the rare CGA Arg codon in the second position due to increased vacancy of the ribosomal A-site. To test this hypothesis, a series of site-directed mutants was constructed, including mutations in both the first and second codons of this codon pair. The results show that interrupting the continuous run of C residues with synonymous codon changes essentially abolishes the frameshift. Further, changing the rare Arg codon to a common Arg codon also reduces the frequency of the frameshift. These results provide strong support for the hypothesis that CCC CGA in the zero frame is indeed a weak translational frameshift site in Escherichia coli, with a 1-2% efficiency. Because the vector sequence also contains another CCC triplet in the +1 reading frame starting within the next codon after the CGA, our data also support possible contribution to expression of a +7 nucleotide ribosome hop into the same +1 reading frame. We also confirm here a previous report that CCC UGA is a translational frameshift site, in these experiments, with about 5% efficiency.


Subject(s)
Codon/genetics , Escherichia coli/genetics , Frameshift Mutation , Protein Biosynthesis , Amino Acid Sequence , Base Sequence , Molecular Sequence Data , Mutagenesis, Site-Directed , Restriction Mapping , Ribosomes/genetics , beta-Galactosidase/genetics
17.
FASEB J ; 17(12): 1674-81, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12958174

ABSTRACT

An unusual 38 codon sequence was previously isolated from a random peptide library by binding to growth hormone binding protein in phage display. This sequence, H10, and several variants did not contain open reading frames, but expressed a beta-galactosidase reporter 10-40% as well as control in both the original reading frame from phage display and the frame -1 to it. Inspection of the sequence suggested that expression in the -1 frame resulted from initiation at a downstream ATG in that frame, present in H10 and its variants, subsequently confirmed by site-directed mutagenesis. Unexpectedly, mutagenesis of that out-of-frame downstream ATG also increased expression in the original non-open reading frame by two- to threefold, creating a TTG codon adjacent to an existing in-frame TTG codon, suggesting downstream translational reinitiation at a putative TTG start. We undertook an extensive site-directed mutagenesis approach and report that this hypothesis is almost certainly correct. Features required for this reinitiation include an upstream translation start and a stop that can even be a suppressed amber codon 22 nucleotides further downstream from the restart. Replacing the TTG with ATG increases expression only twofold. Reinitiation occurs in either of two reading frames in this sequence.


Subject(s)
Codon, Initiator/biosynthesis , Peptide Chain Initiation, Translational , Amino Acid Sequence , Base Sequence , Carrier Proteins/metabolism , Codon, Initiator/genetics , Codon, Initiator/isolation & purification , Codon, Terminator , Molecular Sequence Data , Mutagenesis, Site-Directed , Open Reading Frames , Peptide Library , Transcription Initiation Site
18.
Gene Expr ; 10(3): 109-14, 2002.
Article in English | MEDLINE | ID: mdl-12064573

ABSTRACT

An unusual peptide-encoding sequence, called H10, and several derivatives of this sequence were previously isolated from a random peptide library screened by phage display during drug discovery protocols. The H10 family of sequences had the unusual property of being expressed despite the absence of an open reading frame. When these sequences were fused to a reporter lacZ gene in all three frames, beta-galactosidase was expressed not only from the parental non-open reading frame, consistent with the original isolations, but also from the frame -1 to the parental. This unexpected translation in a second reading frame could result from either a recoding event or from an internal translation initiation event. In order to elucidate which type of event, a genetic approach was selected to eliminate a potential downstream initiator site within the H10 sequence. This report provides strong evidence that translation in the -1 frame in this family of sequences is indeed originating from a downstream translation initiation event. Unexpectedly, the mutation eliminating the downstream initiation event in the -1 frame simultaneously elevated expression in the original non-open reading frame.


Subject(s)
Escherichia coli/genetics , Peptide Library , Protein Biosynthesis , Amino Acid Sequence , Base Sequence , DNA, Bacterial/genetics , Genes, Reporter , Lac Operon , Molecular Sequence Data , Mutagenesis, Site-Directed , Open Reading Frames , Peptide Chain Initiation, Translational , Plasmids/genetics , beta-Galactosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...