Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Urolithiasis ; 45(1): 3-9, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27915396

ABSTRACT

This manuscript reviews the requirements for acceptable compositional analysis of kidney stones using various biophysical methods. High-resolution X-ray powder diffraction crystallography and Fourier transform infrared spectroscopy (FTIR) are the only acceptable methods in our labs for kidney stone analysis. The use of well-constructed spectral reference libraries is the basis for accurate and complete stone analysis. The literature included in this manuscript identify errors in most commercial laboratories and in some academic centers. We provide personal comments on why such errors are occurring at such high rates, and although the work load is rather large, it is very worthwhile in providing accurate stone compositions. We also provide the results of our almost 90,000 stone analyses and a breakdown of the number of components we have observed in the various stones. We also offer advice on determining the method used by the various FTIR equipment manufacturers who also provide a stone analysis library so that the FTIR users can feel comfortable in the accuracy of their reported results. Such an analysis on the accuracy of the individual reference libraries could positively influence the reduction in their respective error rates.


Subject(s)
Kidney Calculi/chemistry , Decision Trees , Humans , Kidney Calculi/diagnosis , Kidney Calculi/therapy
2.
J Endourol Case Rep ; 1(1): 41-3, 2015.
Article in English | MEDLINE | ID: mdl-27579385

ABSTRACT

Polyisobutylene (PIB) is a synthetic elastomer that is a component of sealants, adhesives, and chewing gum base. We report a case of bilateral PIB urolithiasis in a patient with an ileal conduit urinary diversion due to neurogenic bladder from spinal cord injury. Infrared spectroscopy confirmed the composition of bilateral stones and adhesive from the patient's urostomy appliance to be PIB. No previous cases of PIB urolithiasis are reported in the literature.

3.
Langmuir ; 24(23): 13701-9, 2008 Dec 02.
Article in English | MEDLINE | ID: mdl-18956849

ABSTRACT

We explored surface-anchored poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) brushes as potential templates for protein immobilization. The brushes were grown using atom transfer radical polymerization from surface-anchored initiators and characterized by a combination of ellipsometry, atomic force microscopy, and X-ray photoelectron spectroscopy. RNase A was immobilized as a model enzyme through the nucleophilic attack of azlactone by the amine groups in the lysines located in the protein. The surface density of RNase A increased linearly from 5 to 50 nm. For 50 nm thick poly(2-vinyl-4,4-dimethyl azlactone) brushes, 7.5 microg/cm2 of RNase A was bound. The kinetics and thermodynamics of RNase A immobilization, the activity relative to surface density, and the pH and temperature dependence were examined. A Langmuir-like model for binding kinetics indicates that the kinetics are controlled by the rate of adsorption of RNase A and has an adsorption rate constant, k(ads), of 2.8 x 10(-8) microg(-1) s(-1) cm3. A maximum relative activity of approximately 0.95, which is near the activity of free RNase A, was reached at 1.2 microg/cm2 (approximately 3.0 monolayers) of immobilized RNase A. The immobilized RNase A had a similar temperature and pH dependence as free RNase A, indicating no significant change in conformation. The PVDMA template was extended to other biotechnologically relevant enzymes, such as deoxyribonuclease I, glucose oxidase, glucoamylase, and trypsin, with relative activities higher than or comparable to those of enzymes immobilized by other means. PVDMA brushes offer an efficient route to immobilize proteins via the ring opening of azlactone without the need for activation or pretreatment while retaining high relative activities of the bound enzymes.


Subject(s)
Enzymes, Immobilized/metabolism , Lactones/chemistry , Polyvinyls/chemistry , Ribonuclease, Pancreatic/metabolism , Binding Sites , Deoxyribonuclease I/metabolism , Glucan 1,4-alpha-Glucosidase/metabolism , Glucose Oxidase/metabolism , Hydrogen-Ion Concentration , Kinetics , Lactones/chemical synthesis , Molecular Structure , Polyvinyls/chemical synthesis , Surface Properties , Temperature , Thermodynamics , Time Factors , Trypsin/metabolism
4.
Langmuir ; 24(3): 913-20, 2008 Feb 05.
Article in English | MEDLINE | ID: mdl-18076197

ABSTRACT

The ability to immobilize proteins with high binding capacities on surfaces while maintaining their activity is critical for protein microarrays and other biotechnological applications. We employed poly(acrylic acid) (PAA) brushes as templates to immobilize ribonuclease A (RNase A), which is commonly used to remove RNA from plasmid DNA preparations. The brushes are grown by surface-anchored atom-transfer radical polymerization (ATRP) initiators. RNase A was immobilized by both covalent esterification and a high binding capacity metal-ion complexation method to PAA brushes. The polymer brushes immobilized 30 times more enzyme compared to self-assembled monolayers. As the thickness of the brush increases, the surface density of the RNase A increases monotonically. The immobilization was investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The activity of the immobilized RNase A was determined using UV absorbance. As much as 11.0 microg/cm(2) of RNase A was bound to PAA brushes by metal-ion complexation compared to 5.8 microg/cm(2) by covalent immobilization which is 30 and 16 times the estimated mass bound in a monolayer. The calculated diffusion coefficient D was 0.63 x 10(-14) cm(2)/s for metal-ion complexation and 0.71 x 10(-14) cm(2)/s for covalent immobilization. Similar values of D indicate that the binding kinetics is similar, but the thermodynamic equilibrium coverage varies with the binding chemistry. Immobilization kinetics and thermodynamics were characterized by ellipsometry for both methods. A maximum relative activity of 0.70-0.80 was reached between five and nine monolayers of the immobilized enzyme. However, the relative activity for covalent immobilization was greater than that of metal-ion complexation. Covalent esterification resulted in similar temperature dependence as free enzyme, whereas metal-ion complexation showed no temperature dependence indicating a significant change in conformation.


Subject(s)
Ribonuclease, Pancreatic/chemistry , Ribonuclease, Pancreatic/metabolism , Acrylic Resins , Coated Materials, Biocompatible , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Glass , Kinetics , Models, Molecular , Molecular Weight , Protein Conformation , Silicon , Spectrum Analysis , Thermodynamics , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...