Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Nat Nanotechnol ; 17(9): 1015-1022, 2022 09.
Article in English | MEDLINE | ID: mdl-35995855

ABSTRACT

Current clinical brain tumour therapy practices are based on tumour resection and post-operative chemotherapy or X-ray radiation. Resection requires technically challenging open-skull surgeries that can lead to major neurological deficits and, in some cases, death. Treatments with X-ray and chemotherapy, on the other hand, cause major side-effects such as damage to surrounding normal brain tissues and other organs. Here we report the development of an integrated nanomedicine-bioelectronics brain-machine interface that enables continuous and on-demand treatment of brain tumours, without open-skull surgery and toxicological side-effects on other organs. Near-infrared surface plasmon characteristics of our gold nanostars enabled the precise treatment of deep brain tumours in freely behaving mice. Moreover, the nanostars' surface coating enabled their selective diffusion in tumour tissues after intratumoral administration, leading to the exclusive heating of tumours for treatment. This versatile remotely controlled and wireless method allows the adjustment of nanoparticles' photothermal strength, as well as power and wavelength of the therapeutic light, to target tumours in different anatomical locations within the brain.


Subject(s)
Brain Neoplasms , Nanoparticles , Photochemotherapy , Animals , Brain Neoplasms/drug therapy , Cell Line, Tumor , Gold/therapeutic use , Mice , Theranostic Nanomedicine
2.
Sci Rep ; 11(1): 5710, 2021 03 11.
Article in English | MEDLINE | ID: mdl-33707521

ABSTRACT

The prognosis for high-grade glioma (HGG) remains dismal and the extent of resection correlates with overall survival and progression free disease. Epidermal growth factor receptor (EGFR) is a biomarker heterogeneously expressed in HGG. We assessed the feasibility of detecting HGG using near-infrared fluorescent antibody targeting EGFR. Mice bearing orthotopic HGG xenografts with modest EGFR expression were imaged in vivo after systemic panitumumab-IRDye800 injection to assess its tumor-specific uptake macroscopically over 14 days, and microscopically ex vivo. EGFR immunohistochemical staining of 59 tumor specimens from 35 HGG patients was scored by pathologists and expression levels were compared to that of mouse xenografts. Intratumoral distribution of panitumumab-IRDye800 correlated with near-infrared fluorescence and EGFR expression. Fluorescence distinguished tumor cells with 90% specificity and 82.5% sensitivity. Target-to-background ratios peaked at 14 h post panitumumab-IRDye800 infusion, reaching 19.5 in vivo and 7.6 ex vivo, respectively. Equivalent or higher EGFR protein expression compared to the mouse xenografts was present in 77.1% HGG patients. Age, combined with IDH-wildtype cerebral tumor, was predictive of greater EGFR protein expression in human tumors. Tumor specific uptake of panitumumab-IRDye800 provided remarkable contrast and a flexible imaging window for fluorescence-guided identification of HGGs despite modest EGFR expression.


Subject(s)
ErbB Receptors/immunology , Fluorescent Antibody Technique , Glioma/diagnostic imaging , Glioma/pathology , Molecular Imaging , Adolescent , Adult , Aged , Animals , Biomarkers, Tumor/metabolism , Brain Neoplasms/diagnosis , Brain Neoplasms/pathology , Cell Line, Tumor , Child , Child, Preschool , Contrast Media/chemistry , Female , Humans , Indoles/pharmacokinetics , Indoles/pharmacology , Infant , Male , Mice , Middle Aged , Neoplasm Grading , Panitumumab/pharmacokinetics , Panitumumab/pharmacology , Tissue Distribution/drug effects , Xenograft Model Antitumor Assays , Young Adult
3.
IEEE Trans Med Imaging ; 39(4): 1127-1137, 2020 04.
Article in English | MEDLINE | ID: mdl-31567074

ABSTRACT

We present software-based methods for automatic phase control and for mosaicing high-speed, Lissajous-scanned images. To achieve imaging speeds fast enough for mosaicing, we first increase the image update rate tenfold from 3 to 30 Hz, then vertically interpolate each sparse image in real-time to eliminate fixed pattern noise. We validate our methods by imaging fluorescent beads and automatically maintaining phase control over the course of one hour. We then image fixed mouse brain tissues at varying update rates and compare the resulting mosaics. Using reconstructed image data as feedback for phase control eliminates the need for phase sensors and feedback controllers, enabling long-term imaging experiments without additional hardware. Mosaicing subsampled images results in video-rate imaging speeds, nearly fully recovered spatial resolution, and millimeter-scale fields of view.


Subject(s)
Image Processing, Computer-Assisted/methods , Microscopy, Confocal/methods , Software , Video Recording/methods , Algorithms , Animals , Brain/diagnostic imaging , Mice
4.
Adv Funct Mater ; 29(51)2019 Dec 19.
Article in English | MEDLINE | ID: mdl-33041743

ABSTRACT

Early and comprehensive endoscopic detection of colonic dysplasia - the most clinically significant precursor lesion to colorectal adenocarcinoma - provides an opportunity for timely, minimally-invasive intervention to prevent malignant transformation. Here, the development and evaluation of biodegradable near-infrared fluorescent silica nanoparticles (FSN) is described that have the potential to improve adenoma detection during fluorescence-assisted white-light colonoscopic surveillance in rodent and human-scale models of colorectal carcinogenesis. FSNs are biodegradable (t1/2 of 2.7 weeks), well-tolerated, and enable detection and delineation of adenomas as small as 0.5 mm2 with high tumor-to-background ratios. Furthermore, in the human-scale, APC 1311/+ porcine model, the clinical feasibility and benefit of using FSN-guided detection of colorectal adenomas using video-rate fluorescence-assisted white-light endoscopy is demonstrated. Since nanoparticles of similar size (e.g., 100-150-nm) or composition (i.e., silica, silica/gold hybrid) have already been successfully translated to the clinic, and, clinical fluorescent/white light endoscopy systems are becoming more readily available, there is a viable path towards clinical translation of the proposed strategy for early colorectal cancer detection and prevention in high-risk patients.

5.
PLoS One ; 10(4): e0123185, 2015.
Article in English | MEDLINE | ID: mdl-25923788

ABSTRACT

The detection of biomarker-targeting surface-enhanced Raman scattering (SERS) nanoparticles (NPs) in the human gastrointestinal tract has the potential to improve early cancer detection; however, a clinically relevant device with rapid Raman-imaging capability has not been described. Here we report the design and in vivo demonstration of a miniature, non-contact, opto-electro-mechanical Raman device as an accessory to clinical endoscopes that can provide multiplexed molecular data via a panel of SERS NPs. This device enables rapid circumferential scanning of topologically complex luminal surfaces of hollow organs (e.g., colon and esophagus) and produces quantitative images of the relative concentrations of SERS NPs that are present. Human and swine studies have demonstrated the speed and simplicity of this technique. This approach also offers unparalleled multiplexing capabilities by simultaneously detecting the unique spectral fingerprints of multiple SERS NPs. Therefore, this new screening strategy has the potential to improve diagnosis and to guide therapy by enabling sensitive quantitative molecular detection of small and otherwise hard-to-detect lesions in the context of white-light endoscopy.


Subject(s)
Endoscopy, Gastrointestinal , Nanoparticles/chemistry , Spectrum Analysis, Raman , Animals , Colon/physiopathology , Endoscopy, Gastrointestinal/instrumentation , Equipment Design , Esophagus/physiopathology , Humans , Miniaturization , Neoplasms/diagnosis , Swine
7.
J Biomed Opt ; 18(9): 096008, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24008818

ABSTRACT

Topical application and quantification of targeted, surface-enhanced Raman scattering (SERS) nanoparticles offer a new technique that has the potential for early detection of epithelial cancers of hollow organs. Although less toxic than intravenous delivery, the additional washing required to remove unbound nanoparticles cannot necessarily eliminate nonspecific pooling. Therefore, we developed a real-time, ratiometric imaging technique to determine the relative concentrations of at least two spectrally unique nanoparticle types, where one serves as a nontargeted control. This approach improves the specific detection of bound, targeted nanoparticles by adjusting for working distance and for any nonspecific accumulation following washing. We engineered hardware and software to acquire SERS signals and ratios in real time and display them via a graphical user interface. We report quantitative, ratiometric imaging with nanoparticles at pM and sub-pM concentrations and at varying working distances, up to 50 mm. Additionally, we discuss optimization of a Raman endoscope by evaluating the effects of lens material and fiber coating on background noise, and theoretically modeling and simulating collection efficiency at various working distances. This work will enable the development of a clinically translatable, noncontact Raman endoscope capable of rapidly scanning large, topographically complex tissue surfaces for small and otherwise hard to detect lesions.


Subject(s)
Endoscopes , Nanoparticles/chemistry , Signal Processing, Computer-Assisted , Spectrum Analysis, Raman/instrumentation , Spectrum Analysis, Raman/methods , Algorithms , Colon/chemistry , Computer Simulation , Equipment Design , Humans , Limit of Detection , Optical Fibers , Principal Component Analysis
8.
Proc Natl Acad Sci U S A ; 110(25): E2288-97, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23703909

ABSTRACT

Endoscopic imaging is an invaluable diagnostic tool allowing minimally invasive access to tissues deep within the body. It has played a key role in screening colon cancer and is credited with preventing deaths through the detection and removal of precancerous polyps. However, conventional white-light endoscopy offers physicians structural information without the biochemical information that would be advantageous for early detection and is essential for molecular typing. To address this unmet need, we have developed a unique accessory, noncontact, fiber optic-based Raman spectroscopy device that has the potential to provide real-time, multiplexed functional information during routine endoscopy. This device is ideally suited for detection of functionalized surface-enhanced Raman scattering (SERS) nanoparticles as molecular imaging contrast agents. This device was designed for insertion through a clinical endoscope and has the potential to detect and quantify the presence of a multiplexed panel of tumor-targeting SERS nanoparticles. Characterization of the Raman instrument was performed with SERS particles on excised human tissue samples, and it has shown unsurpassed sensitivity and multiplexing capabilities, detecting 326-fM concentrations of SERS nanoparticles and unmixing 10 variations of colocalized SERS nanoparticles. Another unique feature of our noncontact Raman endoscope is that it has been designed for efficient use over a wide range of working distances from 1 to 10 mm. This is necessary to accommodate for imperfect centering during endoscopy and the nonuniform surface topology of human tissue. Using this endoscope as a key part of a multiplexed detection approach could allow endoscopists to distinguish between normal and precancerous tissues rapidly and to identify flat lesions that are otherwise missed.


Subject(s)
Colonic Neoplasms/pathology , Colonoscopy/instrumentation , Endoscopes , Precancerous Conditions/pathology , Spectrum Analysis, Raman/methods , Adenomatous Polyps/pathology , Colon/pathology , Equipment Design , Humans , Male , Models, Statistical , Nanoparticles , Optical Fibers , Pilot Projects , Quartz , Scattering, Radiation , Sensitivity and Specificity
9.
Stud Health Technol Inform ; 185: 235-64, 2013.
Article in English | MEDLINE | ID: mdl-23542938

ABSTRACT

Miniature microscopes are being developed to examine tissue in situ for early anatomic and molecular indicators of disease, in real time, and at cellular resolution. These new devices will lead to a shift from the current diagnostic paradigm of biopsy followed by histopathology and recommended therapy, to one of non-invasive point-of-care diagnosis with the possibility of treatment in the same session. This potential revolution in disease management may have a major impact on the training of future physicians to include the use and interpretation of real-time in vivo microscopic data, and will also affect the emerging fields of telepathology and telemedicine. Implementation of new technologies into clinical practice is a complex process that requires multidisciplinary communication and collaboration among clinicians, engineers and scientists. As such, our aim is to provide a forward-looking view of the critical issues facing the development of new technologies and directing clinical education. Here, we focus on the use of in vivo microscopy for detection of malignant and pre-malignant lesions as well as for guiding therapy. We will highlight some of the areas in which in vivo microscopy could address unmet clinical needs, and then review the technological challenges that are being addressed, or need to be addressed, for in vivo microscopy to become an effective clinical tool.


Subject(s)
Cytodiagnosis/instrumentation , Cytodiagnosis/methods , Image Enhancement/instrumentation , Image Enhancement/methods , Microscopy/instrumentation , Microscopy/methods , Point-of-Care Systems , Computer Systems , Equipment Design , Miniaturization
10.
Biomed Opt Express ; 4(2): 322-30, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23412564

ABSTRACT

We demonstrate vertical cross-sectional (XZ-plane) images of near-infrared (NIR) fluorescence with a handheld dual axes confocal endomicroscope that reveals specific binding of a Cy5.5-labeled peptide to pre-malignant colonic mucosa. This view is perpendicular to the tissue surface, and is similar to that used by pathologists. The scan head is 10 mm in outer diameter (OD), and integrates a one dimensional (1-D) microelectromechanical systems (MEMS) X-axis scanner and a bulky lead zirconate titanate (PZT) based Z-axis actuator. The microscope images in a raster-scanning pattern with a ±6 degrees (mechanical) scan angle at ~3 kHz in the X-axis (fast) and up to 10 Hz (0-400 µm) in the Z-axis (slow). Vertical cross-sectional fluorescence images are collected with a transverse and axial resolution of 4 and 5 µm, respectively, over a field-of-view of 800 µm (width) × 400 µm (depth). NIR vertical cross-sectional fluorescence images of fresh mouse colonic mucosa demonstrate histology-like imaging performance with this miniature instrument.

11.
J Biomed Opt ; 17(2): 021102, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22463020

ABSTRACT

Near-infrared confocal microendoscopy is a promising technique for deep in vivo imaging of tissues and can generate high-resolution cross-sectional images at the micron-scale. We demonstrate the use of a dual-axis confocal (DAC) near-infrared fluorescence microendoscope with a 5.5-mm outer diameter for obtaining clinical images of human colorectal mucosa. High-speed two-dimensional en face scanning was achieved through a microelectromechanical systems (MEMS) scanner while a micromotor was used for adjusting the axial focus. In vivo images of human patients are collected at 5 frames/sec with a field of view of 362×212 µm(2) and a maximum imaging depth of 140 µm. During routine endoscopy, indocyanine green (ICG) was topically applied a nonspecific optical contrasting agent to regions of the human colon. The DAC microendoscope was then used to obtain microanatomic images of the mucosa by detecting near-infrared fluorescence from ICG. These results suggest that DAC microendoscopy may have utility for visualizing the anatomical and, perhaps, functional changes associated with colorectal pathology for the early detection of colorectal cancer.


Subject(s)
Endoscopes, Gastrointestinal , Image Enhancement/instrumentation , Lenses , Microscopy, Confocal/instrumentation , Signal Processing, Computer-Assisted/instrumentation , Equipment Design , Equipment Failure Analysis , Humans , Infrared Rays , Miniaturization
12.
Anal Cell Pathol (Amst) ; 34(3): 81-98, 2011.
Article in English | MEDLINE | ID: mdl-21673433

ABSTRACT

Advances in optical designs are enabling the development of miniature microscopes that can examine tissue in situ for early anatomic and molecular indicators of disease, in real time, and at cellular resolution. These new devices will lead to major changes in how diseases are detected and managed, driving a shift from today's diagnostic paradigm of biopsy followed by histopathology and recommended therapy, to non-invasive point-of-care diagnosis with possible same-session definitive treatment. This shift may have major implications for the training requirements of future physicians to enable them to interpret real-time in vivo microscopic data, and will also shape the emerging fields of telepathology and telemedicine. Implementation of new technologies into clinical practice is a complex process that requires bridging gaps between clinicians, engineers and scientists. This article provides a forward-looking discussion of these issues, with a focus on malignant and pre-malignant lesions, by first highlighting some of the clinical areas where point-of-care in vivo microscopy could address unmet needs, and then by reviewing the technological challenges that are being addressed, or need to be addressed, for in vivo microscopy to become a standard clinical tool.


Subject(s)
Endoscopes , Microscopy/instrumentation , Miniaturization , Pathology/instrumentation , Point-of-Care Systems , Animals , Diffusion of Innovation , Equipment Design , Humans , Predictive Value of Tests , Prognosis , Telepathology/instrumentation
13.
IEEE Trans Biomed Eng ; 58(1): 159-71, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20934939

ABSTRACT

Recent advances in optical imaging have led to the development of miniature microscopes that can be brought to the patient for visualizing tissue structures in vivo. These devices have the potential to revolutionize health care by replacing tissue biopsy with in vivo pathology. One of the primary limitations of these microscopes, however, is that the constrained field of view can make image interpretation and navigation difficult. In this paper, we show that image mosaicing can be a powerful tool for widening the field of view and creating image maps of microanatomical structures. First, we present an efficient algorithm for pairwise image mosaicing that can be implemented in real time. Then, we address two of the main challenges associated with image mosaicing in medical applications: cumulative image registration errors and scene deformation. To deal with cumulative errors, we present a global alignment algorithm that draws upon techniques commonly used in probabilistic robotics. To accommodate scene deformation, we present a local alignment algorithm that incorporates deformable surface models into the mosaicing framework. These algorithms are demonstrated on image sequences acquired in vivo with various imaging devices including a hand-held dual-axes confocal microscope, a miniature two-photon microscope, and a commercially available confocal microendoscope.


Subject(s)
Endoscopes , Image Processing, Computer-Assisted/methods , Microscopy, Confocal , Algorithms , Animals , Brain/anatomy & histology , Brain/blood supply , Endoscopy/methods , Hand , Humans , Mice , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Miniaturization , Robotics/instrumentation , Skin/anatomy & histology
14.
J Invest Dermatol ; 131(5): 1061-6, 2011 May.
Article in English | MEDLINE | ID: mdl-21191407

ABSTRACT

Advancing molecular therapies for the treatment of skin diseases will require the development of new tools that can reveal spatiotemporal changes in the microanatomy of the skin and associate these changes with the presence of the therapeutic agent. For this purpose, we evaluated a handheld dual-axis confocal (DAC) microscope that is capable of in vivo fluorescence imaging of skin, using both mouse models and human skin. Individual keratinocytes in the epidermis were observed in three-dimensional image stacks after topical administration of near-infrared (NIR) dyes as contrast agents. This suggested that the DAC microscope may have utility in assessing the clinical effects of a small interfering RNA (siRNA)-based therapeutic (TD101) that targets the causative mutation in pachyonychia congenita (PC) patients. The data indicated that (1) formulated indocyanine green (ICG) readily penetrated hyperkeratotic PC skin and normal callused regions compared with nonaffected areas, and (2) TD101-treated PC skin revealed changes in tissue morphology, consistent with reversion to nonaffected skin compared with vehicle-treated skin. In addition, siRNA was conjugated to NIR dye and shown to penetrate through the stratum corneum barrier when topically applied to mouse skin. These results suggest that in vivo confocal microscopy may provide an informative clinical end point to evaluate the efficacy of experimental molecular therapeutics.


Subject(s)
Contrast Media , Skin Diseases/diagnosis , Animals , Humans , Indocyanine Green , Keratinocytes/pathology , Mice , Microscopy, Confocal/instrumentation , Microscopy, Confocal/methods , Microscopy, Fluorescence/instrumentation , Microscopy, Fluorescence/methods , Pachyonychia Congenita/drug therapy , Pachyonychia Congenita/pathology , RNA, Small Interfering/therapeutic use , Skin/pathology , Skin Diseases/pathology
15.
J Biomed Opt ; 15(2): 026029, 2010.
Article in English | MEDLINE | ID: mdl-20459274

ABSTRACT

A fluorescence confocal microscope incorporating a 1.8-mm-diam gradient-index relay lens is developed for in vivo histological guidance during resection of brain tumors. The microscope utilizes a dual-axis confocal architecture to efficiently reject out-of-focus light for high-contrast optical sectioning. A biaxial microelectromechanical system (MEMS) scanning mirror is actuated at resonance along each axis to achieve a large field of view with low-voltage waveforms. The unstable Lissajous scan, which results from actuating the orthogonal axes of the MEMS mirror at highly disparate resonance frequencies, is optimized to fully sample 500x500 pixels at two frames per second. Optically sectioned fluorescence images of brain tissues are obtained in living mice to demonstrate the utility of this microscope for image-guided resections.


Subject(s)
Algorithms , Craniotomy/instrumentation , Image Enhancement/instrumentation , Lenses , Microscopy, Confocal/instrumentation , Surgery, Computer-Assisted/instrumentation , Animals , Mice , Miniaturization , Reproducibility of Results , Sensitivity and Specificity
16.
Biophys J ; 96(6): 2405-14, 2009 Mar 18.
Article in English | MEDLINE | ID: mdl-19289065

ABSTRACT

The burgeoning fields of in vivo three-dimensional (3D) microscopy and endomicroscopy, as well as ex vivo tissue cytometry have introduced new challenges for tissue preparation and staining with exogenous molecular contrast agents. These challenges include effective delivery of the agents, and once delivered, distinguishing between bound verses unbound molecular probes. If applied topically, there are additional issues with rinsing off unbound probe, which can be nonuniform and inefficient in thick tissues, thus leading to ambiguous contrast and a large nonspecific background that may obscure molecule-specific staining. Therefore, we have developed a ratiometric 3D microscopy scheme that not only reduces the effects of nonspecific sources of contrast, but also enables quantification of the relative binding affinity of imaging probes to their biomarker targets. Here we demonstrate this ratiometric approach by simultaneously imaging a HER2/neu (erbB2)-targeted monoclonal antibody labeled with one fluorophore and an isotype-matched negative control antibody labeled with another fluorophore. By taking a pixel-by-pixel calibrated ratio between the signals from each fluorescent image channel, accurate quantification of specific versus nonspecific binding affinity is achieved with cultured cells, yielding data that are in agreement with analyses via flow cytometry. We also demonstrate quantitative 3D microscopic imaging of biomarker expression in tissue models and in thick human biopsy samples of normal, HER2-negative, and HER2-positive breast tumors. This strategy enables rapid, quantitative, and unambiguous volumetric microscopy of biomarker expression in thick tissues, including whole biopsies, and will enable real-time optical assessment of disease markers in the living body.


Subject(s)
Biomarkers/metabolism , Cell Membrane/metabolism , Imaging, Three-Dimensional/methods , Microscopy, Confocal/methods , Antibodies , Breast Neoplasms/metabolism , Cell Line , Collagen , Drug Combinations , Female , Flow Cytometry , Fluorescence , Humans , Laminin , Proteoglycans , Receptor, ErbB-2/metabolism
17.
J Biomed Opt ; 13(3): 034020, 2008.
Article in English | MEDLINE | ID: mdl-18601565

ABSTRACT

Miniature endoscopic microscopes, with subcellular imaging capabilities, will enable in vivo detection of molecularly-targeted fluorescent probes for early disease detection. To optimize a dual-axis confocal microscope (DACM) design for this purpose, we use a tabletop instrument to determine the ability of this technology to perform optical sectioning deep within tissue. First, we determine how tissue scattering deteriorates the diffraction-limited transverse and vertical responses in reflectance imaging. Specifically, the vertical response of a DACM to a plane reflector is measured at various depths in a scattering phantom and compared with diffraction theory and Monte Carlo scattering simulations. Similarly, transverse line scans across a knife-edge target are performed at various depths in a scattering phantom. Second, as a practical demonstration of deep-tissue fluorescence microscopy that corroborates the findings from our scattering experiments, 3-D fluorescence images are obtained in thick human gastrointestinal mucosal specimens. Our results demonstrate efficient rejection of scattered light in a DACM, which enables deep optical sectioning in tissue with subcellular resolution that can distinguish between normal and premalignant pathologies.


Subject(s)
Gastric Mucosa/cytology , Image Enhancement/instrumentation , Intestinal Mucosa/cytology , Microscopy, Confocal/instrumentation , Microscopy, Fluorescence/instrumentation , Nephelometry and Turbidimetry/instrumentation , Optics and Photonics/instrumentation , Humans , In Vitro Techniques , Phantoms, Imaging
18.
Opt Express ; 16(10): 7224-32, 2008 May 12.
Article in English | MEDLINE | ID: mdl-18545427

ABSTRACT

We present a handheld dual-axes confocal microscope that is based on a two-dimensional microelectromechanical systems (MEMS) scanner. It performs reflectance and fluorescence imaging at 488 nm wavelength, with three-dimensional imaging capability. The fully packaged microscope has a diameter of 10 mm and acquires images at 4 Hz frame rate with a maximum field of view of 400 microm x 260 microm. The transverse and axial resolutions of the handheld probe are 1.7 microm and 5.8 microm, respectively. Capability to perform real time small animal imaging is demonstrated in vivo in transgenic mice.


Subject(s)
Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Animals , Computers , Diagnostic Imaging/instrumentation , Diagnostic Imaging/methods , Equipment Design , Green Fluorescent Proteins/metabolism , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Mice , Mice, Transgenic , Optics and Photonics , Photons , Software
19.
Opt Lett ; 32(12): 1674-6, 2007 Jun 15.
Article in English | MEDLINE | ID: mdl-17572743

ABSTRACT

We perform Monte Carlo simulations to show that the dual-axes (DA) confocal architecture has superior rejection of multiply scattered photons in tissue to that of single axis. As a result, the DA configuration provides improved signal-to-noise ratio and dynamic range, and thus is sensitive to ballistic photons from deeper within tissue, features that are particularly useful for performing vertical cross-sectional reflectance images in tissue.


Subject(s)
Microscopy, Confocal/instrumentation , Optics and Photonics , Anisotropy , Chemical Phenomena , Chemistry, Physical , Equipment Design , Microscopy, Confocal/methods , Models, Statistical , Models, Theoretical , Monte Carlo Method , Photons , Scattering, Radiation
20.
Opt Lett ; 32(3): 256-8, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17215937

ABSTRACT

The first, to our knowledge, miniature dual-axes confocal microscope has been developed, with an outer diameter of 10 mm, for subsurface imaging of biological tissues with 5-7 microm resolution. Depth-resolved en face images are obtained at 30 frames per second, with a field of view of 800 x 100 microm, by employing a two-dimensional scanning microelectromechanical systems mirror. Reflectance and fluorescence images are obtained with a laser source at 785 nm, demonstrating the ability to perform real-time optical biopsy.


Subject(s)
Fiber Optic Technology/instrumentation , Image Enhancement/instrumentation , Micromanipulation/instrumentation , Microscopy, Confocal/instrumentation , Spectrophotometry, Infrared/instrumentation , Computer Systems , Electronics , Equipment Design , Equipment Failure Analysis , Mechanics , Micromanipulation/methods , Microscopy, Confocal/methods , Miniaturization , Reproducibility of Results , Sensitivity and Specificity , Spectrophotometry, Infrared/methods , Transducers
SELECTION OF CITATIONS
SEARCH DETAIL
...