Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Geobiology ; 11(4): 377-95, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23682649

ABSTRACT

Marine sediments of the Ross Sea, Antarctica, harbor microbial communities that play a significant role in the decomposition, mineralization, and recycling of organic carbon (OC). In this study, the cell densities within a 153-cm sediment core from the Ross Sea were estimated based on microbial phospholipid fatty acid (PLFA) concentrations and acridine orange direct cell counts. The resulting densities were as high as 1.7 × 107 cells mL⁻¹ in the top ten centimeters of sediments. These densities are lower than those calculated for most near-shore sites but consistent with deep-sea locations with comparable sedimentation rates. The δ¹³C measurements of PLFAs and sedimentary and dissolved carbon sources, in combination with ribosomal RNA (SSU rRNA) gene pyrosequencing, were used to infer microbial metabolic pathways. The δ¹³C values of dissolved inorganic carbon (DIC) in porewaters ranged downcore from -2.5‰ to -3.7‰, while δ¹³C values for the corresponding sedimentary particulate OC (POC) varied from -26.2‰ to -23.1‰. The δ¹³C values of PLFAs ranged between -29‰ and -35‰ throughout the sediment core, consistent with a microbial community dominated by heterotrophs. The SSU rRNA gene pyrosequencing revealed that members of this microbial community were dominated by ß-, δ-, and γ-Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes. Among the sequenced organisms, many appear to be related to known heterotrophs that utilize OC sources such as amino acids, oligosaccharides, and lactose, consistent with our interpretation from δ¹³CPLFA analysis. Integrating phospholipids analyses with porewater chemistry, δ¹³CDIC and δ¹³CPOC values and SSU rRNA gene sequences provides a more comprehensive understanding of microbial communities and carbon cycling in marine sediments, including those of this unique ice shelf environment.


Subject(s)
Archaea/classification , Bacteria/classification , Biota , Geologic Sediments/microbiology , Antarctic Regions , Archaea/isolation & purification , Bacteria/isolation & purification , Bacterial Load , Cell Count , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Geologic Sediments/chemistry , Ice , Phospholipids/analysis , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
2.
Environ Microbiol ; 2(3): 298-309, 2000 Jun.
Article in English | MEDLINE | ID: mdl-11200431

ABSTRACT

Emissions of N2O from cover soils of both abandoned (> 30 years) and active landfills greatly exceed the maximum fluxes previously reported for tropical soils, suggesting high microbial activities for N2O production. Low soil matrix potentials (<-0.7 MPa) indicate that nitrification was the most likely mechanism of N2O formation during most of the time of sampling. Soil moisture had a strong influence on N2O emissions. The production of N2O was stimulated by as much as 20 times during laboratory incubations, when moisture was increased from -2.0 MPa to -0.6 MPa. Additional evidence from incubation experiments and delta13C analyses of fatty acids (18:1) diagnostic of methanotrophs suggests that N2O is formed in these soils by nitrification via methanotrophic bacteria. In a NH3(g)-amended landfill soil, the rate of N2O production was significantly increased when incubated with 100 ppmv methane compared with 1.8 ppmv (atmospheric) methane. Preincubation of a landfill soil with 1% CH4 for 2 weeks resulted in higher rates of N2O production when subsequently amended with NH3(g) relative to a control soil preincubated without CH4. At one location, at the soil depth (9-16 cm) of maximum methane consumption and N2O production, we observe elevated concentrations of organic carbon and nitrogen and distinct minima in delta15N (+1.0%) and delta13C (-33.8%) values for organic nitrogen and organic carbon respectively. A delta13C value of -39.3% was measured for 18:1 carbon fatty acids in this soil, diagnostic of type II methanotrophs. The low delta15N value for organic nitrogen is consistent with N2 fixation by type II methanotrophs. These observations all point to a methanotrophic origin for the organic matter at this depth. The results of this study corroborate previous reports of methanotrophic nitrification and N2O formation in aqueous and soil environments and suggest a predominance of type II rather than type I or type X methanotrophs in this landfill soil.


Subject(s)
Methane/metabolism , Nitrous Oxide/metabolism , Soil Microbiology , Euryarchaeota/growth & development , Euryarchaeota/metabolism , Fatty Acids/analysis , Humidity , Nitrogen Fixation , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...