Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 92
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959080

ABSTRACT

Engineered metallic nanoparticles, which are found in numerous applications, are usually stabilized by organic ligands influencing their interfacial properties. We found that the ligands affect tremendously the electrochemical peak oxidation potentials of the nanoparticles. In this work, identical gold nanoparticles were ligand-exchanged and carefully analyzed to enable a precise and highly reproducible comparison. The peak potential difference between gold nanoparticles stabilized by various ligands, such as 2- and 4-mercaptobenzoic acid, can be as high as 71 mV, which is substantial in energetic terms. A detailed study supported by density functional theory (DFT) calculations aimed to determine the source of this interesting effect. The DFT simulations of the ligand adsorption modes on Au surfaces were used to calculate the redox potentials through the thermodynamic cycle method. The DFT results of the peak potential shift were in good agreement with the experimental results for a few ligands, but showed some discrepancy, which was attributed to kinetic effects. The kinetic rate constant of the oxidation of Au nanoparticles stabilized by 4-mercaptobenzoic acid was found to be twice as large as that of the Au nanoparticles stabilized by citrate, as calculated from Laviron's theory and the Tafel equation. Finally, these findings could be applied to some novel applications such as determining the distribution of nanoparticle population in a dispersion as well as monitoring the ligand exchange between nanoparticles.

2.
Chem Sci ; 14(36): 9630-9650, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37736620

ABSTRACT

Nanomaterials, and especially nanoparticles, have been introduced to almost any aspect of our lives. This has caused increasing concern as to their toxicity and adverse effects on the environment and human health. The activity of nanoparticles, including their nanotoxicity, is not only a function of the material they are made of but also their size, shape, and surface properties. It is evident that there is an unmet need for simple approaches to the speciation of nanoparticles, namely to monitor and detect them based on their properties. An appealing method for such speciation involves the imprinting of nanoparticles in soft matrices. The principles of imprinting nanoparticles originate from the molecularly imprinted polymer (MIP) approach. This review summarizes the current status of this emerging field, which bridges between the traditional MIP approach and the imprinting of larger entities such as viruses and bacteria. The concepts of nanoparticle imprinting and the requirement of both physical and chemical matching between the nanoparticles and the matrix are discussed and demonstrated.

3.
Polymers (Basel) ; 15(17)2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37688212

ABSTRACT

Digital light processing (DLP) is a vat photopolymerization 3D printing technique with increasingly broad application prospects, particularly in personalized medicine, such as the creation of medical devices. Different resins and printing parameters affect the functionality of these devices. One of the many problems that biomedical implants encounter is inflammation and bacteria growth. For this reason, many studies turn to the addition of antibacterial agents to either the bulk material or as a coating. Zinc oxide nanoparticles (ZnO NPs) have shown desirable properties, including antibacterial activity with negligible toxicity to the human body, allowing their use in a wide range of applications. In this project, we developed a resin of poly(ethylene glycol) diacrylate (PEGDA), a cross-linker known for its excellent mechanical properties and high biocompatibility in a 4:1 weight ratio of monomers to water. The material's mechanical properties (Young's modulus, maximum elongation, and ultimate tensile strength) were found similar to those of human cartilage. Furthermore, the ZnO NPs embedding matrix showed strong antibacterial activity against Escherichia coli (E. coli) and Staphylococcus aureus (S.A.). As the ZnO NPs ratio was changed, only a minor effect on the mechanical properties of the material was observed, whereas strong antibacterial properties against both bacteria were achieved in the case of 1.5 wt.% NPs.

4.
Sci Adv ; 9(34): eadh9487, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37624888

ABSTRACT

Developing technologies based on the concept of methanol electrochemical refinery (e-refinery) is promising for carbon-neutral chemical manufacturing. However, a lack of mechanism understanding and material properties that control the methanol e-refinery catalytic performances hinders the discovery of efficient catalysts. Here, using 18O isotope-labeled catalysts, we find that the oxygen atoms in formate generated during the methanol e-refinery reaction can originate from the catalysts' lattice oxygen and the O-2p-band center levels can serve as an effective descriptor to predict the catalytic performance of the catalysts, namely, the formate production rates and Faradaic efficiencies. Moreover, the identified descriptor is consolidated by additional catalysts and theoretical mechanisms from density functional theory. This work provides direct experimental evidence of lattice oxygen participation and offers an efficient design principle for the methanol e-refinery reaction to formate, which may open up new research directions in understanding and designing electrified conversions of small molecules.

5.
ACS Appl Mater Interfaces ; 15(27): 32687-32696, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37358329

ABSTRACT

The development of highly selective probes for nanoparticles is required due to their nanotoxicity. The latter strongly depends on the size, structure, and interfacial properties of the nanoparticles. Here, we demonstrate that a simple approach for the selective detection of Au nanoparticles that differ in their capping agent shows very high promise. Specifically, gold nanoparticles stabilized by each of the three different isomers of mercaptobenzoic acid (MBA) were imprinted in a soft matrix by adsorption of the nanoparticles, followed by filling the non-occupied areas through electropolyermization of an aryl diazonium salt (ADS). Nanocavities bearing the shape of the Au nanoparticles were formed upon the electrochemical dissolution of the nanoparticles, which were used for the reuptake of the Au nanoparticles stabilized by the different isomers. High reuptake selectivity was found where the originally imprinted nanoparticles were recognized better than the Au nanoparticles stabilized by other MBA isomers. Furthermore, an imprinted matrix by nanoparticles stabilized by 4-MBA could also recognize nanoparticles stabilized by 2-MBA, and vice versa. A detailed study using Raman spectroscopy and electrochemistry disclosed the organization of the capping isomers on the nanoparticles as well as the specific nanoparticle-matrix interactions that were responsible for the high reuptake selectivity observed. Specifically, the Raman band at ca. 910 cm-1 for all AuNP-matrix systems implies the formation of a carboxylic acid dimer and thus the interaction of the ligands with the matrix. These results have implications for the selective and simple sensing of engineered nanoparticles.

6.
Anal Chem ; 95(5): 2789-2795, 2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36700557

ABSTRACT

Studying nanoparticle (NP)-electrode interactions in single nanoparticle collision events is critical to understanding dynamic processes such as nanoparticle motion, adsorption, oxidation, and catalytic activity, which are abundant on electrode surfaces. Herein, NP-electrode electrostatic interactions are studied by tracking the oxidation of AgNPs at Au microelectrodes functionalized with charged self-assembled monolayers (SAMs). Tuning the charge of short alkanethiol-based monolayers and selecting AgNPs that can be partially or fully oxidized upon impact enabled probing the influence of attractive and repulsive NP-electrode electrostatic interactions on collision frequency, electron transfer, and nanoparticle sizing. We find that repulsive electrostatic interactions lead to a significant decrease in collision frequency and erroneous nanoparticle sizing. In stark difference, attractive electrostatic interactions dramatically increase the collision frequency and extend the sizing capability to larger nanoparticle sizes. Thus, these findings demonstrate how NP-monolayer interactions can be studied and manipulated by combining nanoimpact electrochemistry and functionalized SAMs.

7.
ChemSusChem ; 15(21): e202201418, 2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36042539

ABSTRACT

Hybrid electric storage systems that combine capacitive and faradaic materials need to be well designed to benefit from the advantages of batteries and supercapacitors. The ultimate capacitive material is graphite (GR), yet high capacitance is usually not achieved due to restacking of its sheets. Therefore, an appealing approach to achieve high power and energy systems is to embed a faradaic 2D material in between the graphite sheets. Here, a simple one-step approach was developed, whereby a faradaic material [layered double hydroxide (LDH)] was electrochemically formed inside electrochemically exfoliated graphite. Specifically, GR was exfoliated under negative potentials by CoII and, in the presence of MnII , formed GR-CoMn-LDH, which exhibited a high areal capacitance and energy density. The high areal capacitance was attributed to the exfoliation of the graphite at very negative potentials to form a 3D foam-like structure driven by hydrogen evolution as well as the deposition of CoMn-LDH due to hydroxide ion generation inside the GR sheets. The ratio between the CoII and MnII in the CoMn-LDH was optimized and analyzed, and the electrochemical performance was studied. Analysis of a cross-section of the GR-CoMn-LDH confirmed the deposition of LDH inside the GR layers. The areal capacitance of the electrode was 186 mF cm-2 at a scan rate of 2 mV s-1 . Finally, an asymmetric supercapacitor was assembled with GR-CoMn-LDH and exfoliated graphite as the positive and negative electrodes, respectively, yielding an energy density of 96.1 µWh cm-3 and a power density of 5 mW cm-3 .

8.
ACS Sens ; 7(1): 296-303, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35014805

ABSTRACT

Monitoring of nanoparticles (NPs) in air and aquatic environments is an unmet challenge accentuated by the rising exposure to anthropogenic or engineered NPs. The inherent heterogeneity in size, shape, and the stabilizing shell of NPs makes their selective recognition a daunting task. Thus far, only a few technologies have shown promise in detecting NPs; however, they are cumbersome, costly, and insensitive to the NPs morphology or composition. Herein, we apply an approach termed nanoparticle-imprinted matrices (NAIM), which is based on creating voids in a thin layer by imprinting NPs followed by their removal. The NAIM was formed on an interdigitated electrode (IDE) and used for the size-selective detection of silica NPs. Three- and 5-fold increases in capacitance were observed for the reuptake of NPs with similar diameter, compared to smaller or larger NPs, in air and liquid phase, respectively. En masse, the proposed approach lays the foundation for the emergence of field-effective, inexpensive, real-life applicable sensors that will allow online monitoring of NPs in air and liquids.


Subject(s)
Molecular Imprinting , Nanoparticles , Electrodes , Silicon Dioxide
9.
ACS Omega ; 6(40): 26251-26261, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34660984

ABSTRACT

The fabrication of Nd-Nb co-doped SnO2/α-WO3 electrochromic (EC) materials for smart window applications is presented in the present paper. Nb is a good dopant candidate for ECs owing to its ability to introduce active sites on the surface of α-WO3 without causing much lattice strain due to the similar ionic radius of Nb5+ and W6+. These active sites introduce more channels for charge insertion or removal during redox reactions, improving the overall EC performance. However, Nb suffers from prolonged utilization due to the Li+ ions trapped within the ECs. By coupling Nd with Nb, the co-dopants would transfer their excess electrons to SnO2, improving the electronic conductivity and easing the insertion and extraction of Li+ cations from the ECs. The enhanced Nd-Nb co-doped SnO2/α-WO3 exhibited excellent visible light transmission (90% transmittance), high near-infrared (NIR) contrast (60% NIR modulation), rapid switching time (∼1 s), and excellent stability (>65% of NIR modulation was retained after repeated electrochemical cycles). The mechanism of enhanced EC performance was also investigated. The novel combination of Nd-Nb co-doped SnO2/α-WO3 presented in this work demonstrates an excellent candidate material for smart window applications to be used in green buildings.

10.
Langmuir ; 37(34): 10340-10347, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34461726

ABSTRACT

Preventing microbial contamination of aquatic environments is crucial for the proper supply of drinking water. Hence, understanding the interactions that govern bacterial and virus adsorption to surfaces is crucial to prevent infection transmittance. Here, we describe a new approach for studying the organization and interactions of various microorganisms, namely, Escherichia coli (E. coli) bacteria, E. coli-specific bacteriophage T4, and plant cucumber green mottle mosaic viruses (CGMMV), at the air/water interface using the Langmuir-Blodgett (LB) technique. CGMMV were found as applicable candidates for further studying their interactions with Langmuir lipid monolayers. The zwitterionic, positively, and negatively charged LB lipid monolayers with adsorbed viruses were deposited onto solid supports and characterized by atomic force microscopy. Using polymerase chain reaction, we indicated that the adsorption of CGMMV onto the LB monolayer is a result of electrostatic interactions. These insights are useful in engineering membrane filters that prevent biofouling for efficient purification systems.


Subject(s)
Escherichia coli , Lipids , Adsorption , Microscopy, Atomic Force , Surface Properties
11.
Nat Commun ; 12(1): 3634, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-34131143

ABSTRACT

Producing hydrogen by water electrolysis suffers from the kinetic barriers in the oxygen evolution reaction (OER) that limits the overall efficiency. With spin-dependent kinetics in OER, to manipulate the spin ordering of ferromagnetic OER catalysts (e.g., by magnetization) can reduce the kinetic barrier. However, most active OER catalysts are not ferromagnetic, which makes the spin manipulation challenging. In this work, we report a strategy with spin pinning effect to make the spins in paramagnetic oxyhydroxides more aligned for higher intrinsic OER activity. The spin pinning effect is established in oxideFM/oxyhydroxide interface which is realized by a controlled surface reconstruction of ferromagnetic oxides. Under spin pinning, simple magnetization further increases the spin alignment and thus the OER activity, which validates the spin effect in rate-limiting OER step. The spin polarization in OER highly relies on oxyl radicals (O∙) created by 1st dehydrogenation to reduce the barrier for subsequent O-O coupling.

12.
J Am Chem Soc ; 143(20): 7671-7680, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33978400

ABSTRACT

Emulsification of immiscible two-phase fluids, i.e., one condensed phase dispersed homogeneously as tiny droplets in an outer continuous medium, plays a key role in medicine, food, chemical separations, cosmetics, fabrication of micro- and nanoparticles and capsules, and dynamic optics. Herein, we demonstrate that water clusters/droplets can be formed in an organic phase via the spontaneous assembling of ionic bilayers. We term these clusters ionosomes, by analogy with liposomes where water clusters are encapsulated in a bilayer of lipid molecules. The driving force for the generation of ionosomes is a unique asymmetrical electrostatic attraction at the water/oil interface: small and more mobile hydrated ions reside in the inner aqueous side, which correlate tightly with the lipophilic bulky counterions in the adjacent outer oil side. These ionosomes can be formed through electrochemical (using an external power source) or chemical (by salt distribution) polarization at the liquid-liquid interface. The charge density of the cations, the organic solvent, and the synergistic effects between tetraethylammonium and lithium cations, all affecting the formation of ionosomes, were investigated. These results clearly prove that a new emulsification strategy is developed providing an alternative and generic platform, besides the canonical emulsification procedure with either ionic or nonionic surfactants as emulsifiers. Finally, we also demonstrate the detection of individual ionosomes via single-entity electrochemistry.

13.
Nat Commun ; 11(1): 5714, 2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33177496

ABSTRACT

N-heterocyclic carbenes (NHCs) have been widely utilized for the formation of self-assembled monolayers (SAMs) on various surfaces. The main methodologies for preparation of NHCs-based SAMs either requires inert atmosphere and strong base for deprotonation of imidazolium precursors or the use of specifically-synthesized precursors such as NHC(H)[HCO3] salts or NHC-CO2 adducts. Herein, we demonstrate an electrochemical approach for surface-anchoring of NHCs which overcomes the need for dry environment, addition of exogenous strong base or restricting synthetic steps. In the electrochemical deposition, water reduction reaction is used to generate high concentration of hydroxide ions in proximity to a metal electrode. Imidazolium cations were deprotonated by hydroxide ions, leading to carbenes formation that self-assembled on the electrode's surface. SAMs of NO2-functionalized NHCs and dimethyl-benzimidazole were electrochemically deposited on Au films. SAMs of NHCs were also electrochemically deposited on Pt, Pd and Ag films, demonstrating the wide metal scope of this deposition technique.

14.
Chem Commun (Camb) ; 56(46): 6277-6280, 2020 Jun 11.
Article in English | MEDLINE | ID: mdl-32373889

ABSTRACT

3D spongy nanofiber structure Fe-NC catalysts were constructed by a graphene regulated electrospinning method. The framework of the catalysts was reconstructed into carbon nanotubes, mesopores and macropores, and most of the Fe3C is converted to Fe2N during the calcination process. All catalysts showed better electrocatalytic performances than commercial Pt/C.

15.
Nanomicro Lett ; 12(1): 141, 2020 Jul 03.
Article in English | MEDLINE | ID: mdl-34138145

ABSTRACT

Lithium-sulfur batteries (LSBs) are considered as the next generation of advanced rechargeable batteries because of their high energy density. In this study, sulfur and CoxS electrocatalyst are deposited on carbon nanotube buckypaper (S/CoxS/BP) by a facile electrodeposition method and are used as a binder-free high-performance cathode for LSBs. Elemental sulfur is deposited on buckypaper by electrooxidation of a polysulfide solution (~ S62-). This approach substantially increased the current and time efficiency of sulfur electrochemical deposition on conductive material for LSBs. S/CoxS/BP cathode could deliver an initial discharge capacity as high as 1650 mAh g-1 at 0.1 C, which is close to the theoretical capacity of sulfur. At current rate of 0.5 C, the S/CoxS/BP has a capacity of 1420 mAh g-1 at the first cycle and 715 mAh g-1 after 500 cycles with a fading rate of 0.099% per cycle. The high capacity of S/CoxS/BP is attributed to both the homogeneous dispersion of nanosized sulfur within BP and the presence of CoxS catalyst. The sodium dodecyl sulfate (SDS) pretreatment of BP renders it polarity to bind polysulfides and thus facilitates the good dispersibility of nanosized sulfur within BP. CoxS catalyst accelerates the kinetics of polysulfide conversion and reduces the presence of polysulfide in the cathode, which suppresses the polysulfide diffusion to anode, i.e., the shuttle effect. The mitigation of the active material loss improves not only the capacity but also the cyclability of S/CoxS/BP.

16.
Chem Commun (Camb) ; 56(3): 379-382, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31808759

ABSTRACT

We present an electrochemical approach for depositing composites made of two insoluble inorganic materials, which cannot be obtained by the conventional electrochemical deposition from ionic speices. Applying a negative potential in an aqueous solution generates OH-, which simultaneously destabilizes dispersed nanomaterials, such as insoluble phosphates and sulfides and causes the deposition of a metal hydroxide from its dissolved ions.

17.
Chemistry ; 25(72): 16573-16581, 2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31556175

ABSTRACT

The electrophoretic deposition (EPD) of graphene-based materials on transparent substrates is highly potential for many applications. Several factors can determine the yield of the EPD process, such as applied voltage, deposition time and particularly the presence of dispersion additives (stabilisers) in the suspension solution. This study presents an additive-free EPD of graphene quantum dot (GQD) thin films on an indium tin oxide (ITO) glass substrate and studies the deposition mechanism with the variation of the applied voltage (10-50 V) and deposition time (5-25 min). It is found that due to the small size (≈3.9 nm) and high content of deprotonated carboxylic groups, the GQDs form a stable dispersion (zeta-potential of about -35 mV) without using additives. The GQD thin films can be deposited onto ITO with optimal surface morphology at 30 V in 5 min (surface roughness of approximately (3.1±1.3) nm). In addition, as-fabricated GQD thin films also possess some interesting physico-optical properties, such as a double-peak photoluminescence at about λ=417 and 439 nm, with approximately 98 % visible transmittance. This low-cost and eco-friendly GQD thin film is a promising material for various applications, for example, transparent conductors, supercapacitors and heat conductive films in smart windows.

18.
Chem Soc Rev ; 48(9): 2518-2534, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30976760

ABSTRACT

Great attention has been recently drawn to metal oxide electrocatalysts for electrocatalysis-based energy storage and conversion devices. To find the optimal electrocatalyst, a prerequisite is an activity metric that reasonably evaluates the intrinsic electrocatalytic activity of a particular catalyst. The intrinsic activity is commonly defined as the specific activity which is the current per unit catalyst surface area. Thus, the precise assessment of intrinsic activity highly depends on the reliable measurement of catalyst surface area, which calls for the knowledge of experimental approaches for determining the surface areas of metal oxide electrocatalysts. This tutorial review aims to summarize and analyze the approaches for measuring the surface areas of metal oxide electrocatalysts for evaluating and comparing their intrinsic electrocatalytic activities. We start by comparing the popular metrics for activity estimation and highlighting the importance of surface-area-normalized activity (i.e. specific activity) for intrinsic chemistry analysis. Second, we provide some general guidelines for experimentally measuring the electrochemically active surface area (ECSA). Third, we review the methods for the surface area measurement of metal oxide electrocatalysts. The detailed procedure for each method is explicitly described to provide a step-by-step manual that guides researchers to perform the measurement; the rationales and uncertainties for each method are discussed to help readers justify the reliable assessment of surface area. Next, we give our recommendations on selecting a rational experimental approach for the surface area measurement of a particular metal oxide electrocatalyst. Lastly, we discuss the future challenges of ECSA measurement and present an exemplary novel ECSA technique.

19.
ACS Appl Bio Mater ; 2(5): 1956-1966, 2019 May 20.
Article in English | MEDLINE | ID: mdl-35030684

ABSTRACT

The controlled release of drugs by an external stimulus is of pivotal interest and importance as a means of increasing administration efficacy. Accordingly, many responsive systems have been developed based on primarily pH, temperature, and light changes. Here, a novel electrochemical triggered release of a doxorubicin (Dox)-loaded hydroxyapatite (HAp) nanoparticle (NP) system is presented. Dox is loaded onto HAp NPs by producing a stable dispersion in DMSO. The Dox-HAp NPs are electrophoretically deposited on a stainless steel (S.S) surface. The adsorbed Dox-HAp NPs are released either by applying a moderate electrochemical potential pulse or upon scanning the potential. Two mechanisms were proposed. The first is that the positive potential induces the desorption of the Dox-HAp NPs. Alternatively, the positive potential could drive the oxidation of water and generation of protons, causing the dissolution of the Dox-HAp NPs. In situ characterization techniques, such as atomic force microscopy (AFM) and confocal microscopy, were used to gain insight on the release mechanism. All measurements allude to the electrochemically driven dissolution of the Dox-HAp NPs and release of the embedded drug. In vitro antitumor activity against both HT-29 and A2780 cancer cells revealed that the efficacy of the released Dox was not significantly affected by the electrochemical process. We believe that the electrochemically triggered release of NPs could be applied to many other responsive systems.

20.
RSC Adv ; 9(29): 16730-16737, 2019 May 24.
Article in English | MEDLINE | ID: mdl-35702622

ABSTRACT

In recent years, there has been significant advancement in smart window technologies due to their effectiveness in reducing energy consumption of indoor lighting and air-conditioning in buildings. Electrochromic (EC) materials, in particular, have been widely studied as they provide a simple method for tuning or modulating visible light and infrared (IR) transmittance. In this work, a novel hybrid, multi-layered SnO2-TiO2-WO3 inverse opal (IO) nanostructure has been fabricated via dip-coating and electrodeposition process. This hybrid nanostructure allows an electrochromic smart window for effective near infrared (NIR) modulation, with high visible transparency and durable EC cycling stability. The visible transparency of as-fabricated hybrid multi-layered SnO2-TiO2-WO3 IO was measured to be in the range of 67.2-88.0% in the bleached state and 67.0-74.4% in the colored state, respectively. Furthermore, the hybrid nanostructure is also able to modulate up to 63.6% NIR radiation at the wavelength of 1200 nm and maintain approximately 82.6% of its NIR blockage capability after 750 reversible cycles. The hybrid multi-layered SnO2-TiO2-WO3 IO nanostructure in this study can potentially be an effective and stable EC material for advanced smart window technology.

SELECTION OF CITATIONS
SEARCH DETAIL
...