Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Environ Health A ; 86(16): 575-596, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37350301

ABSTRACT

Three-dimensional (3D) printing of manufactured goods has increased in the last 10 years. The increased use of this technology has resulted in questions regarding the influence of inhaling emissions generated during printing. The goal of this study was to determine if inhalation of particulate and/or toxic chemicals generated during printing with polycarbonate (PC) plastic affected the neuroendocrine system. Male rats were exposed to 3D-printer emissions (592 µg particulate/m3 air) or filtered air for 4 h/day (d), 4 days/week and total exposures lengths were 1, 4, 8, 15 or 30 days. The effects of these exposures on hormone concentrations, and markers of function and/or injury in the olfactory bulb, hypothalamus and testes were measured after 1, 8 and 30 days exposure. Thirty days of exposure to 3D printer emissions resulted in reductions in thyroid stimulating hormone, follicle stimulating hormone and prolactin. These changes were accompanied by (1) elevation in markers of cell injury; (2) reductions in active mitochondria in the olfactory bulb, diminished gonadotropin releasing hormone cells and fibers as well as less tyrosine hydroxylase immunolabeled fibers in the arcuate nucleus; and (3) decrease in spermatogonium. Polycarbonate plastics may contain bisphenol A, and the effects of exposure to these 3D printer-generated emissions on neuroendocrine function are similar to those noted following exposure to bisphenol A.


Subject(s)
Benzhydryl Compounds , Plastics , Rats , Male , Animals , Printing, Three-Dimensional
2.
Inhal Toxicol ; 32(11-12): 403-418, 2020.
Article in English | MEDLINE | ID: mdl-33076715

ABSTRACT

BACKGROUND: Fused filament fabrication 3-D printing with acrylonitrile butadiene styrene (ABS) filament emits ultrafine particulates (UFPs) and volatile organic compounds (VOCs). However, the toxicological implications of the emissions generated during 3-D printing have not been fully elucidated. AIM AND METHODS: The goal of this study was to investigate the in vivo toxicity of ABS-emissions from a commercial desktop 3-D printer. Male Sprague Dawley rats were exposed to a single concentration of ABS-emissions or air for 4 hours/day, 4 days/week for five exposure durations (1, 4, 8, 15, and 30 days). At 24 hours after the last exposure, rats were assessed for pulmonary injury, inflammation, and oxidative stress as well as systemic toxicity. RESULTS AND DISCUSSION: 3-D printing generated particulate with average particle mass concentration of 240 ± 90 µg/m³, with an average geometric mean particle mobility diameter of 85 nm (geometric standard deviation = 1.6). The number of macrophages increased significantly at day 15. In bronchoalveolar lavage, IFN-γ and IL-10 were significantly higher at days 1 and 4, with IL-10 levels reaching a peak at day 15 in ABS-exposed rats. Neither pulmonary oxidative stress responses nor histopathological changes of the lungs and nasal passages were found among the treatments. There was an increase in platelets and monocytes in the circulation at day 15. Several serum biomarkers of hepatic and kidney functions were significantly higher at day 1. CONCLUSIONS: At the current experimental conditions applied, it was concluded that the emissions from ABS filament caused minimal transient pulmonary and systemic toxicity.


Subject(s)
Acrylic Resins/toxicity , Air Pollution, Indoor/adverse effects , Butadienes/toxicity , Inhalation Exposure/adverse effects , Particulate Matter/toxicity , Polystyrenes/toxicity , Printing, Three-Dimensional , Respiratory System/drug effects , Volatile Organic Compounds/toxicity , Acrylic Resins/pharmacokinetics , Aerosols , Air Pollution, Indoor/analysis , Animals , Biomarkers/metabolism , Blood Cell Count , Bronchoalveolar Lavage Fluid/chemistry , Butadienes/pharmacokinetics , Cytokines/blood , Male , Microscopy, Electron, Scanning , Oxidative Stress/drug effects , Particle Size , Particulate Matter/analysis , Particulate Matter/pharmacokinetics , Polystyrenes/pharmacokinetics , Rats, Sprague-Dawley , Respiratory System/metabolism , Respiratory System/ultrastructure , Volatile Organic Compounds/analysis , Volatile Organic Compounds/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...