Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Vaccine X ; 13: 100259, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36654838

ABSTRACT

Globally, zoonotic spillover is becoming more frequent and represents a growing public health concern. Reservoir-targeted vaccination offers an intriguing alternative to traditional vaccine practices by establishing protection in wild populations that maintain the natural pathogen cycle. As an important pathogen reservoir, Peromyscus leucopus Rafinesque or the white-footed mouse has been the target of several experimental vaccines. However, strategies are limited by the method of administration, need for repeated dosing, or safety of constructs in the field. To address these concerns, we evaluated two highly attenuated poxviruses, raccoonpox virus (RCN) and modified vaccinia Ankara (MVA) virus as potential oral vaccine vectors in white-footed mice. Following oral administration, P. leucopus showed no adverse signs. A single oral dose elicited robust immune responses in mice to the foreign influenza hemagglutinin protein expressed by poxvirus vaccine vectors. Serum hemagglutinin inhibition antibody titers were detected by day 7 post immunization and persisted until study termination (77 days post immunization). This study establishes the safety and immunogenicity of recombinant MVA and RCN poxviruses in P. leucopus and demonstrates the suitability of these vectors as part of a reservoir-targeted vaccine strategy for white-footed mice.

2.
J Med Entomol ; 58(6): 2358-2367, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34397096

ABSTRACT

As tick-borne disease incidence increases and pathogens expand into new areas, the need for effective tick management strategies is paramount. In this 5-yr study (2014-2018) conducted in south central Wisconsin, we assessed whether an integrated tick management approach, deployed during peak tick activity (May-August), was more effective at reducing black-legged ticks (Ixodes scapularis Say (Ixodida: Ixodidae)), than individual interventions. Using a factorial design, invasive vegetation removal (Amur honeysuckle, Lonicera maackii Ruprecht (Dipsacales: Caprifoliaceae) and common buckthorn, Rhamnus cathartica Linnaeus (Rosales: Rhamnaceae)) was coupled with deployments of permethrin-treated cotton nesting materials (tick tubes) that target the white-footed mouse (Peromyscus leucopus Rafinesque (Rodentia: Cricetidae)). Results show that the probability of encountering a larval tick by drag sampling was unaffected by treatments at the cumulative 5-yr level. However, vegetation removal significantly reduced larval encounters in 2014, 2015, and 2018, by 33%, 57%, and 61% respectively, and reduced the density of questing nymphal (DON) ticks by 45% in 2015 compared to controls. Despite the limited effect on DON, vegetation removal significantly reduced the cumulative 5-yr density of Borrelia burgdorferi sensu stricto infected nymphs (DIN) (70%) compared to controls as a result of decreased nymphal infection prevalence. Sites treated with tick tubes had lower DIN (66%) and DON (54%) across the study and nymphs were reduced every year following the initial year of deployment compared to controls. Combining treatments did not further reduce DIN or DONs. We conclude that long-term integration of tick tubes with invasive vegetation removal does not provide additional benefit over individual treatments alone.


Subject(s)
Acaricides , Ixodes , Lonicera , Permethrin , Plants , Rhamnus , Tick Control , Animals , Ixodes/growth & development , Nymph/growth & development , Population Density , Tick Control/instrumentation , Wisconsin
SELECTION OF CITATIONS
SEARCH DETAIL
...