Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Sci Rep ; 9(1): 17247, 2019 Nov 21.
Article in English | MEDLINE | ID: mdl-31754263

ABSTRACT

Dual-comb spectroscopy can provide broad spectral bandwidth and high spectral resolution in a short acquisition time, enabling time-resolved measurements. Specifically, spectroscopy in the mid-infrared wavelength range is of particular interest, since most of the molecules have their strongest rotational-vibrational transitions in this "fingerprint" region. Here we report time-resolved mid-infrared dual-comb spectroscopy, covering ~300 nm bandwidth around 3.3 µm with 6 GHz spectral resolution and 20 µs temporal resolution. As a demonstration, we study a CH4/He gas mixture in an electric discharge, while the discharge is modulated between dark and glow regimes. We simultaneously monitor the production of C2H6 and the vibrational excitation of CH4 molecules, observing the dynamics of both processes. This approach to broadband, high-resolution, and time-resolved mid-infrared spectroscopy provides a new tool for monitoring the kinetics of fast chemical reactions, with potential applications in various fields such as physical chemistry and plasma/combustion analysis.

2.
J Exp Bot ; 70(17): 4571-4582, 2019 08 29.
Article in English | MEDLINE | ID: mdl-31173640

ABSTRACT

Nitrate and ammonia deferentially modulate primary metabolism during the hypersensitive response in tobacco. In this study, tobacco RNAi lines with low nitrite reductase (NiRr) levels were used to investigate the roles of nitrite and nitric oxide (NO) in this process. The lines accumulate NO2-, with increased NO generation, but allow sufficient reduction to NH4+ to maintain plant viability. For wild-type (WT) and NiRr plants grown with NO3-, inoculation with the non-host biotrophic pathogen Pseudomonas syringae pv. phaseolicola induced an accumulation of nitrite and NO, together with a hypersensitive response (HR) that resulted in decreased bacterial growth, increased electrolyte leakage, and enhanced pathogen resistance gene expression. These responses were greater with increases in NO or NO2- levels in NiRr plants than in the WT under NO3- nutrition. In contrast, WT and NiRr plants grown with NH4+ exhibited compromised resistance. A metabolomic analysis detected 141 metabolites whose abundance was differentially changed as a result of exposure to the pathogen and in response to accumulation of NO or NO2-. Of these, 13 were involved in primary metabolism and most were linked to amino acid and energy metabolism. HR-associated changes in metabolism that are often linked with primary nitrate assimilation may therefore be influenced by nitrite and NO production.


Subject(s)
Cell Death/physiology , Nicotiana/metabolism , Nitric Oxide/metabolism , Nitrites/metabolism , Plant Diseases/microbiology , Pseudomonas syringae/physiology , Plant Leaves/metabolism
3.
Phys Chem Chem Phys ; 21(4): 1805-1811, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30628611

ABSTRACT

Collision-induced absorption between O2 and CO2 molecules associated with the a1Δg (v = 1) ← X3Σ-g (v = 0) band of oxygen around 1060 nm was measured using cavity ring-down spectroscopy. The lineshape for this transition is measured for the first time, and the integrated cross-section is found to be smaller than the only previous report. For pure oxygen, we find an integrated absorption value of (2.10 ± 0.31) × 10-4 cm-2 amg-2 which is in good agreement with the previous reported values. For O2-CO2 collisions we report an integrated value of (6.37 ± 1.09) × 10-5 cm-2 amg-2 which is small but still significant and not accounted for by theory.

4.
Appl Opt ; 57(29): 8536-8542, 2018 Oct 10.
Article in English | MEDLINE | ID: mdl-30461920

ABSTRACT

In the field of laser-based absorption spectroscopy, off-axis integrated cavity output spectroscopy is considered to be a sensitive and robust method, employing a simple optical design. However, one of the major drawbacks of non-mode-matched cavities combined with highly reflective mirrors (>99.98%) is its low output intensity. Here, we systematically investigate the increase in cavity output intensity, using a third re-injection mirror before the absorption cavity. The presented design not only enables high transmission power but also retains a long effective path length. To investigate the intensity enhancement, we used a CO2 absorption line in the near-IR wavelength region at 6240.10 cm-1. In agreement with our simulation model, we achieved an intensity enhancement factor of 38. We achieved a noise equivalent absorption sensitivity to 1.6×10-8 cm-1 Hz-1/2, which is no longer limited by the detectivity of the detector.

5.
Sensors (Basel) ; 18(7)2018 Jun 27.
Article in English | MEDLINE | ID: mdl-29954082

ABSTRACT

We employed a single-mode, widely tunable (~300 cm−1) external-cavity quantum cascade laser operating around 8 µm for broadband direct absorption spectroscopy and wavelength modulation spectroscopy where a modulation frequency of 50 kHz was employed with high modulation amplitudes of up to 10 GHz. Using a compact multipass cell, we measured the entire molecular absorption band of acetone at ~7.4 µm with a spectral resolution of ~1 cm−1. In addition, to demonstrate the high modulation dynamic range of the laser, we performed direct absorption (DAS) and second harmonic wavelength modulation spectroscopy (WMS-2f) of the Q-branch peak of acetone molecular absorption band (HWHM ~10 GHz) near 1365 cm−1. With WMS-2f, a minimum detection limit of 15 ppbv in less than 10 s is achieved, which yields a noise equivalent absorption sensitivity of 1.9 × 10−8 cm−1 Hz−1/2.

6.
Methods Mol Biol ; 1747: 49-57, 2018.
Article in English | MEDLINE | ID: mdl-29600450

ABSTRACT

Despite the established importance of nitric oxide (NO) in many physiological and molecular processes in plants, most methods for quantifying NO are open to criticism This reflects the differing methods either lacking specificity or sensitivity, or even from an undue dependence of results on experimental conditions (i.e., chemical concentrations, pH, etc.). In this chapter we describe a protocol to measure gaseous NO produced by a biological sample using quantum cascade laser (QCL)-based spectroscopy. This technique is based on absorption of the laser light by the NO molecules which have been passed from a biological sample into an optical s cell that is equipped with two mirrors placed at both ends. This design greatly increases the interaction path length with the NO molecules due to multiple reflections of the light coupled inside the cell. Thus, the method is able to provide online, in planta measurements of the dynamics of NO production, being highly selective and sensitive (down to ppbv levels;1 ppbv = part per billion by volume mixing ratio = 1:10-9).


Subject(s)
Lasers, Semiconductor , Nitric Oxide/analysis , Spectrum Analysis , Animals , Humans , Plants , Spectrum Analysis/methods
7.
Appl Opt ; 57(2): 154-163, 2018 Jan 10.
Article in English | MEDLINE | ID: mdl-29328166

ABSTRACT

A 3D ray tracing model is used to simulate optical reinjection in a nonresonant optical cavity, for off-axis integrated cavity output spectroscopy. The optical cavities are optimized for maximum intensity enhancement factors via a grid search and a genetic algorithm. Intensity enhancement factors up to 1400 are found for short cavities (3 cm) and up to 101 for long cavities (50 cm). The model predicts that short absorption cells can be used, having a long effective path length and a high throughput power. This opens new opportunities in the field of ultrasensitive absorption spectroscopy and allows the design of compact optical gas sensors.

8.
Sci Rep ; 7(1): 13311, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042616

ABSTRACT

Nitric oxide (NO) is a key messenger in plant stress responses but its exact role in drought response remains unclear. To investigate the role of NO in drought response we employed transgenic barley plants (UHb) overexpressing the barley non-symbiotic hemoglobin gene HvHb1 that oxidizes NO to NO3-. Reduced NO production under drought conditions in UHb plants was associated with increased drought tolerance. Since NO biosynthesis has been related to polyamine metabolism, we investigated whether the observed drought-related NO changes could involve polyamine pathway. UHb plants showed increases in total polyamines and in particular polyamines such as spermidine. These increases correlated with the accumulation of the amino acid precursors of polyamines and with the expression of specific polyamine biosynthesis genes. This suggests a potential interplay between NO and polyamine biosynthesis during drought response. Since ethylene has been linked to NO signaling and it is also related to polyamine metabolism, we explored this connection. In vivo ethylene measurement showed that UHb plants significantly decrease ethylene production and expression of aminocyclopropane-1-carboxylic acid synthase gene, the first committed step in ethylene biosynthesis compared with wild type. These data suggest a NO-ethylene influenced regulatory node in polyamine biosynthesis linked to drought tolerance/susceptibility in barley.


Subject(s)
Droughts , Hordeum/metabolism , Nitric Oxide/metabolism , Polyamines/metabolism , Stress, Physiological , Adaptation, Physiological , Ethylenes/metabolism , Hordeum/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
9.
Sensors (Basel) ; 17(9)2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28878167

ABSTRACT

Increasing demand for field instruments designed to measure gas composition has strongly promoted the development of robust, miniaturized and low-cost handheld absorption spectrometers in the mid-infrared. Efforts thus far have focused on miniaturizing individual components. However, the optical absorption path that the light beam travels through the sample defines the length of the gas cell and has so far limited miniaturization. Here, we present a functionally integrated linear variable optical filter and gas cell, where the sample to be measured is fed through the resonator cavity of the filter. By using multiple reflections from the mirrors on each side of the cavity, the optical absorption path is elongated from the physical m m -level to the effective m m -level. The device is batch-fabricated at the wafer level in a CMOS-compatible approach. The optical performance is analyzed using the Fizeau interferometer model and demonstrated with actual gas measurements.

11.
Methods Mol Biol ; 1424: 113-26, 2016.
Article in English | MEDLINE | ID: mdl-27094415

ABSTRACT

Nitric oxide (NO) plays an important role in plant signaling and in response to various stress conditions. Therefore, real-time measurements of NO production provide better insights into understanding plant processes and can help developing strategies to improve food production and postharvest quality. Using laser-based spectroscopic methods, sensitive, online, in planta measurements of plant-pathogen interactions are possible. This chapter introduces the basic principle of the optical detectors using different laser sources for accurate monitoring of fast dynamic changes of NO production. Several applications are also presented to demonstrate the suitability of these detectors for detection of NO in plants.


Subject(s)
Nitric Oxide/metabolism , Plants/metabolism , Host-Pathogen Interactions , Quantum Theory
12.
Metabolomics ; 11(6): 1656-1666, 2015.
Article in English | MEDLINE | ID: mdl-26491419

ABSTRACT

The present investigation uses proton transfer reaction mass spectrometry (PTR-MS) combined with multivariate and univariate statistical analyses to study potential biomarkers for altered metabolism in urine due to strenuous walking. Urine samples, in concurrence with breath and blood samples, were taken from 51 participants (23 controls, 11 type-1 diabetes, 17 type-2 diabetes) during the Dutch endurance walking event, the International Four Days Marches. Multivariate analysis allowed for discrimination of before and after exercise for all three groups (control, type-1 and type-2 diabetes) and on three out of 4 days. The analysis highlighted 12 molecular ions contributing to this discrimination. Of these, acetic acid in urine is identified as a significant marker for exercise effects induced by walking; an increase is observed as an effect of walking. Analysis of acetone concentration with univariate tools resulted in different information when compared to breath as a function of exercise, revealing an interesting effect of time over the 4 days. In breath, acetone provides an immediate snapshot of metabolism, whereas urinary acetone will result from longer term diffusion processes, providing a time averaged view of metabolism. The potential to use PTR-MS measurements of urine to monitor exercise effects is exhibited, and may be utilized to monitor subjects in mass participation exercise events.

13.
Opt Express ; 23(16): 20418-27, 2015 Aug 10.
Article in English | MEDLINE | ID: mdl-26367896

ABSTRACT

We demonstrate a two-crystal mid-infrared dual-wavelength optical parametric oscillator, synchronously pumped by a high power femtosecond Yb:fiber laser. The singly-resonant ring cavity, containing two periodically poled lithium niobate crystals, is capable of generating two synchronized idler wavelengths, independently tunable over 30 THz in the 2.9 - 4.2 µm wavelength region, due to the cascaded quadratic nonlinear effect. The independent tunability of the two idlers makes the optical parametric oscillator a promising source for ultrafast pulse generation towards the THz wavelength region, based on different frequency generation. In addition, the observed frequency doubled idler within the crystal indicates the possibility to realize a broadband optical self-phase locking between pump, signal, idler and higher order generated parametric lights.

14.
J Breath Res ; 9(2): 027102, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25634638

ABSTRACT

We present the real-time monitoring of hydrogen cyanide (HCN) production from Pseudomonas aeruginosa (P. aeruginosa) strains in vitro, using laser-based photoacoustic spectroscopy. Simultaneously, the production of ammonia (NH3) was measured, and the influence of different factors (e.g. the medium, temperature and antibiotics treatment) was assessed. Both reference strains and clinical isolates of patients with CF were studied, and compared to other pathogens commonly present in lungs/airways of CF patients. Hydrogen cyanide production starts to rise as soon as P. aeruginosa bacteria reach the stationary phase ((9.0-9.5) × 10(9) colony forming units, CFUs), up to concentrations of 14.5 microliters per hour (µl h(-1)). Different strains of P. aeruginosa produced HCN to varying degrees, and addition of tobramycin strongly reduced HCN production within 2 h from application. Burkholderia cepacia also produced HCN (up to 0.35µl h(-1) in 9.0 × 10(9) CFU) while other pathogens (Aspergillus fumigatus, Stenotrophomonas maltophilia, Mycobacterium abscessus) did not produce detectable levels. Our study reveals for the first time a broad overview of the dynamics of the HCN production in vitro.


Subject(s)
Ammonia/metabolism , Hydrogen Cyanide/metabolism , Pseudomonas aeruginosa/metabolism , Colony Count, Microbial , Cystic Fibrosis/microbiology , Humans , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/isolation & purification , Tobramycin/pharmacology
15.
Opt Lett ; 39(11): 3270-3, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24876030

ABSTRACT

We present a femtosecond optical parametric oscillator (OPO) containing two magnesium-doped periodically poled lithium niobate crystals in a singly resonant ring cavity, pumped by two mode-locked Yb-fiber lasers. As such, the OPO generates two idler combs (up to 220 mW), covering a wavelength range from 2.7 to 4.2 µm, from which a mid-infrared dual-comb Fourier transform spectrometer is constructed. By detecting the heterodyning signal between the two idler beams a full broadband spectrum of a molecular gas can be observed over 250 cm(-1) within 70 µs with a spectral resolution of 15 GHz. The absorption and dispersion spectra of acetylene and methane have been measured around 3000 cm(-1), indicating that this OPO represents an ideal broadband mid-infrared source for fast chemical sensing.

16.
Obesity (Silver Spring) ; 22(4): 980-3, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24415494

ABSTRACT

OBJECTIVE: To assess whether breath acetone concentration can be used to monitor the effects of a prolonged physical activity on whole body lipolysis and hepatic ketogenesis in field conditions. METHODS: Twenty-three non-diabetic, 11 type 1 diabetic, and 17 type 2 diabetic subjects provided breath and blood samples for this study. Samples were collected during the International Four Days Marches, in the Netherlands. For each participant, breath acetone concentration was measured using proton transfer reaction ion trap mass spectrometry, before and after a 30-50 km walk on four consecutive days. Blood non-esterified free fatty acid (NEFA), beta-hydroxybutyrate (BOHB), and glucose concentrations were measured after walking. RESULTS: Breath acetone concentration was significantly higher after than before walking, and was positively correlated with blood NEFA and BOHB concentrations. The effect of walking on breath acetone concentration was repeatedly observed on all four consecutive days. Breath acetone concentrations were higher in type 1 diabetic subjects and lower in type 2 diabetic subjects than in control subjects. CONCLUSIONS: Breath acetone can be used to monitor hepatic ketogenesis during walking under field conditions. It may, therefore, provide real-time information on fat burning, which may be of use for monitoring the lifestyle interventions.


Subject(s)
Acetone/analysis , Breath Tests , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Life Style , Motor Activity/physiology , 3-Hydroxybutyric Acid/blood , Adult , Aged , Case-Control Studies , Fatty Acids, Nonesterified/blood , Female , Glucose/metabolism , Humans , Ketones/metabolism , Lipolysis/physiology , Liver/metabolism , Male , Middle Aged
17.
Physiol Plant ; 150(4): 593-603, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24118006

ABSTRACT

Non-symbiotic hemoglobin (nsHb) genes are ubiquitous in plants, but their biological functions have mostly been studied in model plant species rather than in crops. nsHb influences cell signaling and metabolism by modulating the levels of nitric oxide (NO). Class 1 nsHb is upregulated under hypoxia and is involved in various biotic and abiotic stress responses. Ectopic overexpression of nsHb in Arabidopsis thaliana accelerates development, whilst targeted overexpression in seeds can increase seed yield. Such observations suggest that manipulating nsHb could be a valid biotechnological target. We studied the effects of overexpression of class 1 nsHb in the monocotyledonous crop plant barley (Hordeum vulgare cv. Golden Promise). nsHb was shown to be involved in NO metabolism in barley, as ectopic overexpression reduced the amount of NO released during hypoxia. Further, as in Arabidopsis, nsHb overexpression compromised basal resistance toward pathogens in barley. However, unlike Arabidopsis, nsHb ectopic overexpression delayed growth and development in barley, and seed specific overexpression reduced seed yield. Thus, nsHb overexpression in barley does not seem to be an efficient strategy for increasing yield in cereal crops. These findings highlight the necessity for using actual crop plants rather than laboratory model plants when assessing the effects of biotechnological approaches to crop improvement.


Subject(s)
Edible Grain/genetics , Hemoglobins/genetics , Plant Proteins/genetics , Anaerobiosis , Ascomycota/physiology , Biotechnology/methods , Blotting, Western , Edible Grain/metabolism , Edible Grain/microbiology , Endosperm/genetics , Endosperm/metabolism , Endosperm/microbiology , Gene Expression Regulation, Plant , Hemoglobins/metabolism , Hordeum/genetics , Hordeum/metabolism , Hordeum/microbiology , Host-Pathogen Interactions , Nitric Oxide/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified , Reverse Transcriptase Polymerase Chain Reaction
18.
J Biomed Opt ; 18(10): 107002, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24089255

ABSTRACT

A versatile, continuous wave, optical parametric oscillator is used in combination with photoacoustic spectroscopy for long-term trace gas experiments of volatile compounds emitted by biological samples. The optical parametric oscillator-based spectrometer (wavelength near 3 µm, 8-MHz linewidth, output power ∼1 W) is successfully tested for the detection of hydrogen cyanide (HCN) emission from clover leaves, and Pseudomonas bacteria; in addition, the presence of HCN in exhaled human breath is measured. For specific experiments, the spectrometer is operated continuously up to 10 days and has a detection limit of 0.4 parts-per-billion volume of HCN in air over 10 s, using the P8 rotational line in the ν3 vibrational band of HCN at 3287.25 cm⁻¹. This results in an overall sensitivity of the system of 2.5 × 10⁻9 cm-1 Hz⁻¹/².


Subject(s)
Breath Tests/methods , Hydrogen Cyanide/analysis , Photoacoustic Techniques/methods , Gases/analysis , Humans , Limit of Detection , Plant Leaves/chemistry , Pseudomonas/metabolism , Trifolium/chemistry , Volatile Organic Compounds/analysis
19.
AoB Plants ; 5: pls052, 2013.
Article in English | MEDLINE | ID: mdl-23372921

ABSTRACT

BACKGROUND AND AIMS: After a series of seminal works during the last decade of the 20th century, nitric oxide (NO) is now firmly placed in the pantheon of plant signals. Nitric oxide acts in plant-microbe interactions, responses to abiotic stress, stomatal regulation and a range of developmental processes. By considering the recent advances in plant NO biology, this review will highlight certain key aspects that require further attention. SCOPE AND CONCLUSIONS: The following questions will be considered. While cytosolic nitrate reductase is an important source of NO, the contributions of other mechanisms, including a poorly defined arginine oxidizing activity, need to be characterized at the molecular level. Other oxidative pathways utilizing polyamine and hydroxylamine also need further attention. Nitric oxide action is dependent on its concentration and spatial generation patterns. However, no single technology currently available is able to provide accurate in planta measurements of spatio-temporal patterns of NO production. It is also the case that pharmaceutical NO donors are used in studies, sometimes with little consideration of the kinetics of NO production. We here include in planta assessments of NO production from diethylamine nitric oxide, S-nitrosoglutathione and sodium nitroprusside following infiltration of tobacco leaves, which could aid workers in their experiments. Further, based on current data it is difficult to define a bespoke plant NO signalling pathway, but rather NO appears to act as a modifier of other signalling pathways. Thus, early reports that NO signalling involves cGMP-as in animal systems-require revisiting. Finally, as plants are exposed to NO from a number of external sources, investigations into the control of NO scavenging by such as non-symbiotic haemoglobins and other sinks for NO should feature more highly. By crystallizing these questions the authors encourage their resolution through the concerted efforts of the plant NO community.

20.
Ann Bot ; 111(3): 347-60, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23243188

ABSTRACT

BACKGROUND: In view of ethylene's critical developmental and physiological roles the gaseous hormone remains an active research topic for plant biologists. Progress has been made to understand the ethylene biosynthesis pathway and the mechanisms of perception and action. Still numerous questions need to be answered and findings to be validated. Monitoring gas production will very often complete the picture of any ethylene research topic. Therefore the search for suitable ethylene measuring methods for various plant samples either in the field, greenhouses, laboratories or storage facilities is strongly motivated. SCOPE: This review presents an update of the current methods for ethylene monitoring in plants. It focuses on the three most-used methods - gas chromatography detection, electrochemical sensing and optical detection - and compares them in terms of sensitivity, selectivity, time response and price. Guidelines are provided for proper selection and application of the described sensor methodologies and some specific applications are illustrated of laser-based detector for monitoring ethylene given off by Arabidopsis thaliana upon various nutritional treatments. CONCLUSIONS: Each method has its advantages and limitations. The choice for the suitable ethylene sensor needs careful consideration and is driven by the requirements for a specific application.


Subject(s)
Arabidopsis/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Ethylenes/analysis , Plant Growth Regulators/analysis , Biosensing Techniques/instrumentation , Chromatography, Gas , Electrochemical Techniques/instrumentation , Ethylenes/biosynthesis , Lasers , Reproducibility of Results , Sensitivity and Specificity , Time Factors , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...