Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Language
Publication year range
1.
BMC Plant Biol ; 23(1): 380, 2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37550621

ABSTRACT

BACKGROUND: Oregano (Origanum vulgare L.), one of the important medicinal plants in the world, has valuable pharmacological compounds with antimicrobial, antiviral, antioxidant, anti-inflammatory, antispasmodic, antiurolithic, antiproliferative and neuroprotective activities. Phenolic monoterpenes such as thymol and carvacrol with many medical importance are found in Oregano essential oil. The biosynthesis of these compounds is carried out through the methyl erythritol-4 phosphate (MEP) pathway. Environmental stresses such as salinity might improve the secondary metabolites in medicinal plants. The influence of salinity stress (0 (control), 25, 50 and 100 mM NaCl) on the essential oil content, composition and expression of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR), γ-terpinene synthase (Ovtps2) and cytochrome P450 monooxygenases (CYP71D180) genes involved in thymol and carvacrol biosynthesis, was investigated in two oregano subspecies (vulgare and gracile). RESULTS: Essential oil content was increased at low NaCl concentration (25 mM) compared with non-stress conditions, whereas it was decreased as salinity stress intensified (50 and 100 mM). Essential oil content was significantly higher in subsp. gracile than subsp. vulgare. The highest (0.20 mL pot-1) and lowest (0.06 mL pot-1) amount of essential oil yield was obtained in subsp. gracile at 25 and 100 mM NaCl, respectively. The content of carvacrol, as the main component of essential oil, decreased with increasing salinity level in subsp. gracile, but increased in subsp. vulgare. The highest expression of DXR, Ovtps2 and CYP71D180 genes was observed at 50 mM NaCl in subsp. vulgare. While, in subsp. gracile, the expression of the mentioned genes decreased with increasing salinity levels. A positive correlation was obtained between the expression of DXR, Ovtps2 and CYP71D180 genes with carvacrol content in both subspecies. On the other hand, a negative correlation was found between the expression of CYP71D180 and carvacrol content in subsp. gracile. CONCLUSIONS: The findings of this study demonstrated that both oregano subspecies can tolerate NaCl salinity up to 50 mM without significant reduction in essential oil yield. Also, moderate salinity stress (50 mM NaCl) in subsp. vulgare might increase the carvacrol content partly via increment the expression levels of DXR, Ovtps2 and CYP71D180 genes.


Subject(s)
Oils, Volatile , Origanum , Oils, Volatile/metabolism , Thymol , Origanum/genetics , Origanum/metabolism , Sodium Chloride , Monoterpenes/metabolism , Salt Stress/genetics
2.
Braz. arch. biol. technol ; 64: e21200745, 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1350271

ABSTRACT

Abstract Information on genetic diversity is fundamental to developing in situ or ex situ conservation strategies. This study assessed the genetic differentiation between plantations and neighboring natural populations of Juglans regia. Genetic structures of three natural population and three neighboring plantations of J. regia in northwest of Iran were assessed using 10 nuclear microsatellite loci (SSR). Natural populations presented higher total number of alleles (119) and observed heterozygosity (Ho= 0.29) than planted stands (101 alleles, Ho= 0.21). The observed alleles of natural stands varied from 2 (WGA61 and WGA9) to 7 (WGA9) and from 2 (WGA321 and WGA276) to 5 (WGA202 and WGA9) in planted stands. One of the planted populations (B) indicated the largest level of genetic diversity. In conclusion, genetic diversity of all investigated plantation and natural stands are similar. This recommends that even plantations might qualify as gene conservation stands.

SELECTION OF CITATIONS
SEARCH DETAIL
...