Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38140109

ABSTRACT

The Oropouche virus (OROV) is a member of the family Peribunyaviridae (order Bunyavirales) and the cause of a dengue-like febrile illness transmitted mainly by biting midges and mosquitoes. In this study, we aimed to explore acylphloroglucinols and xanthohumol from hops (Humulus lupulus L.) as a promising alternative for antiviral therapies. The evaluation of the inhibitory potential of hops compounds on the viral cycle of OROV was performed through two complementary approaches. The first approach applies cell-based assay post-inoculation experiments to explore the inhibitory potential on the latest steps of the viral cycle, such as genome translation, replication, virion assembly, and virion release from the cells. The second part covers in silico methods evaluating the ability of those compounds to inhibit the activity of the endonuclease domain, which is essential for transcription, binding, and cleaving RNA. In conclusion, the beta acids showed strongest inhibitory potential in post-treatment assay (EC50 = 26.7 µg/mL). Xanthohumol had the highest affinity for OROV endonuclease followed by colupulone and cohumulone. This result contrasts with that observed for docking and MM/PBSA analysis, where cohumulone was found to have a higher affinity. Finally, among the three tested ligands, Lys92 and Arg33 exhibited the highest affinity with the protein.

2.
Int J Mol Sci ; 24(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36834745

ABSTRACT

Chikungunya virus (CHIKV) is an arthropod-borne virus that belongs to the genus Alphavirus (family Togaviridae). CHIKV causes chikungunya fever, which is mostly characterized by fever, arthralgia and, sometimes, a maculopapular rash. The bioactive constituents of hops (Humulus lupulus, Cannabaceae), mainly acylphloroglucinols, known as well as α- and ß-acids, exerted distinct activity against CHIKV, without showing cytotoxicity. For fast and efficient isolation and identification of such bioactive constituents, a silica-free countercurrent separation method was applied. The antiviral activity was determined by plaque reduction test and was visually confirmed by a cell-based immunofluorescence assay. All hops compounds demonstrated a promising post-treatment viral inhibition, except the fraction of acylphloroglucinols, in mixture. ß-acids fraction of 125 µg/mL expressed the strongest virucidal activity (EC50 = 15.21 µg/mL), in a drug-addition experiment on Vero cells. Hypothesis for mechanism of action were proposed for acylphloroglucinols based on their lipophilicity and chemical structure. Therefore, inhibition of some steps of the protein kinase C (PKC) transduction cascades was also discussed.


Subject(s)
Chikungunya Fever , Chikungunya virus , Humulus , Animals , Chlorocebus aethiops , Humans , Antiviral Agents/pharmacology , Vero Cells , Virus Replication
3.
J Agric Food Chem ; 69(29): 8081-8089, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34279926

ABSTRACT

Bryophyllum pinnatum (Lam) Pers. (Crassulaceae) is widely used in folk medicine as leaf juice, aqueous, or hydro-ethanolic extracts. It is also listed as a medicinal plant in several countries such as France and Brazil. The main reported constituents are flavone glycosides, especially those with the rare 3-O-α-l-arabinopyranosyl-(1 → 2)-α-l-rhamnopyranoside moiety. Despite several phytochemical screenings indicating the presence of cyanide derivatives or alkaloids, there are no reports of nitrogenous metabolite characterization from this plant species. Nevertheless, the occurrence and the type of such compounds are of particular interest, as they may account for some of the numerous biological activities and ethnomedicinal uses described for B. pinnatum and could be regarded as chemical/taxonomic markers. Consequently, a hydro-ethanolic extract of B. pinnatum was investigated by using UHPLC-HRMS/MS and the nitrile glucoside sarmentosin was detected for the first time within the genus Bryophyllum/Kalanchoe. Considering the wide use of B. pinnatum and its closely related species for health purposes, the target metabolite was isolated by a combination of centrifugal partition chromatography in elution/extrusion mode and MPLC in order to confirm its structure. A linear, selective, precise, fast, and reliable 1H NMR quantitation method was then developed and validated and may become a tool for easy quality assessment of the plant species. The amount of sarmentosin was determined as 2.07% of the examined sample. Sarmentosin was also detected in Kalanchoe laciniata, confirming the occurrence of this compound within the genus.


Subject(s)
Kalanchoe , Brazil , France , Glycosides , Nitriles , Plant Extracts , Plant Leaves , Proton Magnetic Resonance Spectroscopy
4.
J Pharm Biomed Anal ; 193: 113682, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-33166841

ABSTRACT

Bryophyllum pinnatum (Lam.) Oken (Crassulaceae) is widely used as leaf juice or extracts in traditional medicine all over tropical areas, especially in Brazil, to relieve inflammation-associated symptoms. Flavonol glycosides with unusual sugar moiety are among the major metabolites. Nevertheless, there are not enough quality control studies that can contribute to authentication of B. pinnatum and determination of their markers. As it is also used as medicinal plant in several countries, it is necessary to provide data related to safety, efficacy and quality. In this context, this work aims to isolate the major flavonoids from B. pinnatum hydroethanolic extract, to validate a method to quantify the content of chemical markers and to evaluate their xanthine oxidase inhibition and antioxidant activity. The extract was submitted to centrifugal partition chromatography (CPC). The solvents system CyHex-EtOAc-EtOH-H2O, 0.5:9:3:5.5, v/v/v/v was selected by shake-flask method. Four flavonoids (quercetin 3-O-α-L-arabinopyranosyl-(1→2)-O-α-L-rhamnopyranoside (1), kaempferol 3-O-α-L-arabinopyranosyl-(1→2)-O-α-L-rhamnopyranoside (2), quercetin 3-O-α-L-rhamnopyranoside (3) and kaempferol 3-O-α-L-rhamnopyranoside (4)) were isolated in a single and fast CPC run and their structures were confirmed by NMR analysis. An UPLC-DAD quantification method was established for the first time with validation of required parameters, according to RDC 166/2017. The calibration curves were linear with correlation coefficient ranging from 0.9996 to 0.9997 while the values of LOD (0.0077-1.984 ng.mL-1), LOQ (0.0263-6.012 ng.mL-1), recovery (≥ 80.7 %) and inter-day (%RSD ≤ 3.581) and intra-day precision (%RSD ≤ 2.628) were satisfactory. Quantitative analysis of these compounds showed that the proportion of 1, 2 and 3 were 2.43, 0.25 and 0.33 % (24.3 mg.g-1, 0.25 mg.g-1 and 0.33 mg.g-1 of extract), respectively. Moreover, in vitro xanthine oxidase (XO), DPPH and ABTS inhibition were evaluated for the extract and the major flavonoids. Compounds 2 (168 µM) and 3 (124 µM) moderately inhibited XO, while compounds 1 and 3 displayed average radical scavenging activity. In conclusion, our results suggest the flavonoid 1 as a specific marker which may be used for quality control of B. pinnatum hydroethanolic leaves extract.


Subject(s)
Kalanchoe , Brazil , Flavonoids , Plant Extracts/pharmacology , Plant Leaves
5.
Nat Prod Res ; 34(22): 3299-3302, 2020 Nov.
Article in English | MEDLINE | ID: mdl-30663391

ABSTRACT

Extracts from aerial parts of Prosopis ruscifolia, Bidens pilosa, Cercidium praecox and Phoradendron liga were assayed against toxigenic Aspergillus species. They were obtained by sequential extraction of the aerial parts with hexane (fHex), dichloromethane (fDCM), ethyl acetate (fEtOAc) and methanol (fMeOH). The fMeOH from P. ruscifolia showed the highest antifungal spectrum (MIC = 750-1500 µg mL-1; MID = 50-200 µg; DI = 1.7-3.0 mm). Indolizidine alkaloids (juliflorine and juliprosine) and tryptamine were identified with strong (MIC = 188 µg mL-1) and moderate antifungal activities (MIC = 750 µg mL-1), respectively, towards A. parasiticus and A. flavus. The fMeOH, the indolizidine alkaloids and tryptamine synergized the fungitoxic effect of potassium sorbate and propiconazole. They completely suppressed the biosynthesis of aflatoxins at concentrations of 47, 94 and 375 µg mL-1, respectively. Our results indicate that fMeOH and its identified alkaloids are promisory additives of commercial antifungals and are antiaflatoxigenic agents at concentrations below of those required for complete suppression of fungal growth.


Subject(s)
Antifungal Agents/pharmacology , Aspergillus/drug effects , Plant Extracts/pharmacology , Plants/chemistry , Aflatoxins/metabolism , Alkaloids/chemistry , Alkaloids/pharmacology , Antifungal Agents/chemistry , Argentina , Aspergillus/metabolism , Bidens/chemistry , Drug Evaluation, Preclinical , Food Microbiology , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Indolizines/pharmacology , Methanol/chemistry , Microbial Sensitivity Tests , Plant Components, Aerial/chemistry , Plant Components, Aerial/metabolism , Plant Extracts/chemistry , Prosopis/chemistry , Tryptamines/pharmacology
6.
Nat Prod Res ; 34(12): 1782-1785, 2020 Jun.
Article in English | MEDLINE | ID: mdl-30417714

ABSTRACT

Extracts from aerial parts of medicinal plants from northwest Argentina were screened for antibacterial activity against the phytopathogenic strains namely CECT 124 (Pseudomonas corrugata), CECT 126 (P. syringae pv. tomato), CECT 225 (Erwinia carotovora var. carotovora), CECT 472 (Agrobacterium tumefaciens) and CECT 792 (Xanthomonas campestres pv. vesicatoria). Leaves and stems of Aspidosperma quebracho-blanco, Schinus fasciculatus, S. gracilipes, Amphilophium cynanchoides and Tecoma stans were separately extracted with solvents of increasing polarity to obtain the dichloromethane (fCH2Cl2), ethyl acetate (fEtAc) and methanol extracts (fMeOH), respectively. Among the thirty extracts tested, only fEtAc from leaves and stems of S. fasciculatus reached the IC50 against the five bacterial strains tested (IC50 = 0.9 mg/ml). The fEtAc from the leaves contained kaempferol, quercetin and agathisflavone which had moderate to strong antibacterial activity. This extract and its identified flavonoids showed synergic (CECT 124,126 and 792) or additive effects (CECT 472 and 225) in mixtures with Kocide 3000.


Subject(s)
Anacardiaceae/chemistry , Anti-Bacterial Agents/isolation & purification , Flavonoids/isolation & purification , Plant Extracts/pharmacology , Anti-Bacterial Agents/pharmacology , Argentina , Bacteria/drug effects , Flavonoids/chemistry , Flavonoids/pharmacology , Microbial Sensitivity Tests , Plant Leaves/chemistry , Plants, Medicinal/chemistry
7.
J Chromatogr A ; 1513: 149-156, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28754247

ABSTRACT

A purification sequence including a Gilson CPC 250 PRO device coupled to PrepHPLC hyphenated with a MS triggering fraction collector was applied to isolate secoiridoid glycosides from a complex methanolic extract of Centaurium erythraea. This species is widely used for ethnomedicinal purposes around the Mediterranean Sea. The solvent system ethyle acetate/ethanol/water 7.5/3/5 was determined using shake-flask method targeting swertiamarin, the major secoiridoid of the extract. Optimization of CPC experimental parameters enabled the injection of 4g of extract with a flow rate of 40mL/min at 3000rpm to provide a secoiridoid glycosides enriched fraction. 130mg of this latter was submitted to a second step of purification by preparative HPLC (gradient water/formic acid (19:1) (A) and methanol (B) as follows: 0min, 85% A; 8min, 60% A; 12min, 55% A; 35min, 55% A; 40min, 10% A; 50min, 10% A; 52min, 85% A; 55min, 85% A) to give swertiamarin (36mg, yield 27.7%, purity 98.2%). Other secoiridoid glycosides (sweroside, gentiopicroside, secologanol, secoxyloganin) were also isolated in minor amounts. As these monoterpene derivatives are responsible for several biological activities, their quick recovery with high yield and purity may serve as a model for further scale-up and industrial development.


Subject(s)
Centaurium/chemistry , Centrifugation/methods , Chromatography, High Pressure Liquid/instrumentation , Chromatography, High Pressure Liquid/methods , Iridoid Glycosides/analysis , Mass Spectrometry/methods , Iridoid Glycosides/chemistry , Iridoid Glycosides/isolation & purification , Mediterranean Sea , Methanol/chemistry , Plant Extracts/chemistry , Solvents/chemistry , Ultraviolet Rays
8.
J Pharm Pharm Sci ; 18(3): 515-27, 2015.
Article in English | MEDLINE | ID: mdl-26517139

ABSTRACT

PURPOSE: The early prediction of pharmacokinetic behavior is of paramount importance for saving time and resources and for increasing the success of new drug candidates. The steady-state volume of distribution (VDss) is one of the key pharmacokinetic parameters required for the design of a suitable dosage regimen. The aim of the study is to propose a quantitative structure - pharmacokinetics relationships (QSPkR) for VDss of basic drugs. METHODS: The data set consists of 216 basic drugs, divided to a modeling (n = 180) and external validation set (n = 36). 179 structural and physicochemical descriptors are calculated using validated commercial software. Genetic algorithm, stepwise regression and multiple linear regression are applied for variable selection and model development. The models are validated by internal and external test sets. RESULTS: A number of significant QSPkRs are developed. The most frequently emerged descriptors are used to derive the final consensus model for VDss with good explanatory (r2 0.663) and predictive ability (q2LOO-CV 0.606 and r2pred 0.593). The model reveals clear structural features determining VDss of basic drugs which are summarized in a short list of criteria for rapid discrimination between drugs with a large and small VDss. CONCLUSIONS: Descriptors like lipophilicity, fraction ionized as a base at pH 7.4, number of cycles and fused aromatic rings, presence of Cl and F atoms contribute positively to VDss, while polarity and presence of strong electrophiles have a negative effect.


Subject(s)
Models, Theoretical , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/metabolism , Quantitative Structure-Activity Relationship , Databases, Factual , Tissue Distribution/drug effects , Tissue Distribution/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...