Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 3(2): e1600193, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28246629

ABSTRACT

We sought to determine whether instructional practices used by undergraduate faculty in the geosciences have shifted from traditional teacher-centered lecture toward student-engaged teaching practices and to evaluate whether the national professional development program On the Cutting Edge (hereinafter Cutting Edge) has been a contributing factor in this change. We surveyed geoscience faculty across the United States in 2004, 2009, and 2012 and asked about teaching practices as well as levels of engagement in education research, scientific research, and professional development related to teaching. We tested these self-reported survey results with direct observations of teaching using the Reformed Teaching Observation Protocol, and we conducted interviews to understand what aspects of Cutting Edge have supported change. Survey data show that teaching strategies involving active learning have become more common, that these practices are concentrated in faculty who invest in learning about teaching, and that faculty investment in learning about teaching has increased. Regression analysis shows that, after controlling for other key influences, faculty who have participated in Cutting Edge programs and who regularly use resources on the Cutting Edge website are statistically more likely to use active learning teaching strategies. Cutting Edge participants also report that learning about teaching, the availability of teaching resources, and interactions with peers have supported changes in their teaching practice. Our data suggest that even one-time participation in a workshop with peers can lead to improved teaching by supporting a combination of affective and cognitive learning outcomes.


Subject(s)
Teaching/standards , Earth Sciences/education , Faculty/standards , Humans , Surveys and Questionnaires
2.
CBE Life Sci Educ ; 15(3)2016.
Article in English | MEDLINE | ID: mdl-27562960

ABSTRACT

Best-practices pedagogy in science, technology, engineering, and mathematics (STEM) aims for inclusive excellence that fosters student persistence. This paper describes principles of inclusivity across 11 primarily undergraduate institutions designated as Capstone Awardees in Howard Hughes Medical Institute's (HHMI) 2012 competition. The Capstones represent a range of institutional missions, student profiles, and geographical locations. Each successfully directed activities toward persistence of STEM students, especially those from traditionally underrepresented groups, through a set of common elements: mentoring programs to build community; research experiences to strengthen scientific skill/identity; attention to quantitative skills; and outreach/bridge programs to broaden the student pool. This paper grounds these program elements in learning theory, emphasizing their essential principles with examples of how they were implemented within institutional contexts. We also describe common assessment approaches that in many cases informed programming and created traction for stakeholder buy-in. The lessons learned from our shared experiences in pursuit of inclusive excellence, including the resources housed on our companion website, can inform others' efforts to increase access to and persistence in STEM in higher education.


Subject(s)
Academies and Institutes , Education, Graduate , Community-Institutional Relations , Educational Measurement , Engineering/education , Humans , Mathematics/education , Program Development , Science/education , Students , Technology/education , Thinking
SELECTION OF CITATIONS
SEARCH DETAIL
...