Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202406936, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38769939

ABSTRACT

Cope rearrangements have garnered significant attention owing to their ability to undergo structural reorganization in stereoselective manner. While substantial advances have been achieved over decades, these rearrangements remained applicable exclusively to parent 1,5-hexadienes. Herein, we disclose the gold-catalyzed arylative Cope rearrangement of 1,6-heptadienes via a cyclization-induced [3,3]-rearrangement employing ligand-enabled gold redox catalysis. Detailed mechanistic investigations including several control experiments, cross-over experiment, HRMS analysis, 31P NMR and DFT studies have been performed to underpin the mechanism.

2.
Small ; 20(13): e2306824, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37975153

ABSTRACT

Inspired by the uranyl-imidazole interactions via nitrogen's (N's) of histidine residues in single helical protein assemblies with open framework geometry that allows through migration/coordination of metal ions. Here, preliminary components of a stable hydrogen-bonded organic framework (HOF) are designed to mimic the stable single helical open framework with imidazole residues available for Uranium (U) binding. The imidazolate-HOF (CSMCRIHOF2-S) is synthesized with solvent-directed H-bonding in 1D array and tuned hydrophobic CH-π interactions leading to single helix pattern having enhanced hydrolytic stability. De-solvation led CSMCRIHOF2-P with porous helical 1D channels are transformed in a freestanding thin film that showcased improved mass transfer and adsorption of uranyl carbonate. CSMCRIHOF2-P thin film can effectively extract ≈14.8 mg g-1 in 4 weeks period from natural seawater, with > 1.7 U/V (Uranium to Vanadium ratio) selectivity. This strategy can be extended for rational designing of hydrolytically stable, U selective HOFs to realize the massive potential of the blue economy toward sustainable energy.

3.
Chemistry ; 29(70): e202302759, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37735937

ABSTRACT

Despite remarkable successes in linear and branched vinyl (hetero) arene synthesis, regiodivergent C-H olefination with a single catalytic system has remained underdeveloped. Overcoming this limitation, a Pd/MPAA-catalyzed regiodivergent C-H olefination of imidazo[1,2a] pyridine carboxamides with unactivated terminal alkenes to generate branched and linear olefinated products depending upon the electronic nature of alkenes is reported herein. Moreover, this protocol can be applied for C-H deuteriation of the corresponding heteroarenes with D2 O as deuterium source. Preliminary experimental studies combined with computational investigations (DFT studies) suggest that regiodivergent olefination can be controlled by olefin insertion and ß-hydride elimination steps.

4.
J Fluoresc ; 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37542589

ABSTRACT

In this work, we introduced a simple aggregation-induced emission enhancement (AIEE) sensor (PHCS) which can selectively detect and discriminate three environmentally and biologically imperative heavy metal ions (Cu2+, Co2+ and Hg2+) and a hazard class 1 categorized nitro-explosive picric acid (PA) in differential media. By virtue of its weak fluorescence attributes in pure organic medium owing to the synergistic operation of multiple photophysical quenching mechanisms, the molecular probe showcased highly selective 'TURN ON' fluorogenic response towards hazardous Hg2+ with a limit of detection (LOD) as low as 97 nM. Comprehensive investigation of binding mechanism throws light on the cumulative effect of probe-metal complexation induced chelation enhanced fluorescence (CHEF) effect and subsequent AIEE activation within the formed probe-metal adducts. Noteworthily, the probe (PHCS) can be readily used in real water samples for the quantitative determination of Hg2+ in a wide concentration range. In addition, the probe displayed modest colorimetric recognition performances to selectively detect and discriminate two essential heavy metal ions (Cu2+ and Co2+) with a LOD of 96 nM and 65 nM for Cu2+ and Co2+ respectively, in semi-aqueous medium. Intriguingly, based on high photoluminescence efficiency, the AIEE active nano-aggregated PHCS displayed a remarkable propensity to be used as a selective and ultra-sensitive 'TURN-OFF' fluorogenic chemosensor towards PA with LOD of 34.4 ppb in aqueous medium. Finally, we specifically shed light on the interaction of PHCS hydrosol towards PA using some unprecedented techniques, which helped uncover new photophysical insights of probe-explosive molecule interaction. We shed light on novel photophysical insights toward unique multifunctional sensory aptitude of a simple aggregation-induced emission enhancement active organic functional molecule in differential media, enabling ultra-sensitive discriminative detection of toxic heavy metal ions and explosive molecule simultaneously.

5.
Angew Chem Int Ed Engl ; 62(42): e202310493, 2023 Oct 16.
Article in English | MEDLINE | ID: mdl-37649285

ABSTRACT

Herein, we report the first gold-catalyzed 1,2-dicarbofunctionalization of alkynes using organohalides as non-prefunctionalized coupling partners. The mechanism of the reaction involves an oxidative addition/π-activation mechanism in contrast to the migratory insertion/cis-trans isomerization pathway that is predominantly observed with other transition metals yielding products with anti-selectivity. Mechanistic insights include several control experiments, NMR studies, HR-MSMS analyses, and DFT calculations that strongly support the proposed mechanism.

6.
STAR Protoc ; 4(1): 102100, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36853858

ABSTRACT

Here, we present a protocol for uranium extraction from seawater (UES) and its characterization and computational-based structure analysis. We describe formulating batch adsorption experiments for adsorptive separation of uranium using thin film (TFCH) of Hydrogen-bonded Organic Framework (CSMCRIHOF-1). We then detail the recovery of uranium using eluent mixtures and the steps to regenerate TFCH for recyclability studies. Finally, we describe the spectroscopic characterizations of TFCH and uranium adsorbed TFCH, followed by computational analysis of the structures and binding sites. For complete details on the use and execution of this protocol, please refer to Kaushik et al. (2022).1.


Subject(s)
Uranium , Uranium/chemistry , Uranium/metabolism , Seawater/chemistry , Spectrum Analysis , Adsorption
7.
Chemistry ; 29(4): e202203055, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36197081

ABSTRACT

Reported herein is a reactivity of propargyl alcohols as "Three-Carbon Synthons" in a Rh(III)-catalyzed C-H functionalization of acetanilides, leading to the synthesis of core structures of isocryptolepine, γ-carbolines, dihydrochromeno[2,3-b]indoles, and diindolylmethanes (DIM) derivatives. The transformation involves a rhodium(III)-catalyzed C-H functionalization and heteroannulation to yield indoles followed by a cascade cyclization with both external and internal nucleophiles to afford diverse products. The role of the hydroxy group, the key function of the silver additive, the origin of the reverse regioselectivity and the rate-determining step, are rationalized in conformity with the combination of experimental, noncovalent interaction analysis and DFT studies. This protocol is endowed with several salient features, including one-pot multistep cascade approach, exclusive regioselectivity, good functional group tolerance and synthesis of variety of molecular frameworks.

8.
J Am Chem Soc ; 144(16): 7089-7095, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35436097

ABSTRACT

Presented herein is the first report of enantioselective Au(I)/Au(III) redox catalysis, enabled by a newly designed hemilabile chiral (P,N)-ligand (ChetPhos). The potential of this concept has been demonstrated by the development of enantioselective 1,2-oxyarylation and 1,2-aminoarylation of alkenes which provided direct access to the medicinally relevant 3-oxy- and 3-aminochromans (up to 88% yield and 99% ee). DFT studies were carried out to unravel the enantiodetermining step, which revealed that the stronger trans influence of phosphorus allows selective positioning of the substrate in the C2-symmetric chiral environment present around nitrogen, imparting a high level of enantioselectivity.


Subject(s)
Alkenes , Catalysis , Ligands , Oxidation-Reduction , Stereoisomerism
9.
Org Lett ; 23(21): 8189-8193, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34643397

ABSTRACT

An exclusive synthesis of benzo-oxazine, benzo-oxazepine, and benzo-oxazocine from aryl propanal and 2-(hydroxyamino)phenyl alcohol under metal-free conditions is described. O atom transfer and formation of new C═O, C-N, and C-O bonds occur at room temperature to form six-, seven-, and eight-membered heterocycles under one-pot reaction conditions without using an external oxidant and base. The photophysical properties are studied using ultraviolet-visible absorption and photoluminescence. The mechanistic elucidation is well supported by control experiment and literature precedents.

11.
ACS Sens ; 5(10): 3254-3263, 2020 10 23.
Article in English | MEDLINE | ID: mdl-32975114

ABSTRACT

Nanostructured polymeric materials, functionalized with an appropriate receptor, have opened up newer possibilities for designing a reagent that shows analyte-specific recognition and efficient scavenging of an analyte that has either a detrimental influence on human physiology and environment or on its recovery for further value addition. Higher active surface area, morphological diversity, synthetic tunability for desired surface functionalization, and the ease of regeneration of a nanostructured material for further use have provided such materials with a distinct edge over conventional reagents. The use of a biodegradable polymeric backbone has an added significance owing to the recent concern over the impact of polymers on the environment. Functionalization of biodegradable sodium alginate with AENA (6.85% grafting) as the receptor functionality led to a unique open framework nanoring (NNRG) morphology with a favorable spatial orientation for specific recognition and efficient binding to uranyl ions (U) in an aqueous medium over a varied pH range. Nanoring morphology was confirmed by transmission electron microscopy and atomic force microscopy images. The nanoscale design maximizes the surface area for the molecular scavenger. A combination of all these features along with the reversible binding phenomenon has made NNRG a superior reagent for specific, efficient uptake of UO22+ species from an acidic (pH 3-4) solution and compares better than all existing UO22+-scavengers reported till date. This could be utilized for the recovery of uranyl species from a synthetic acidic effluent of the nuclear power. The results of the U uptake experiments reveal a maximum adsorption capacity of 268 mg of U per g of NNRG in a synthetic nuclear effluent. X-ray photoelectron spectroscopy studies revealed a reductive complexation process and stabilization of U(IV)-species in adsorbed uranium species (U@NNRG).


Subject(s)
Uranium , Adsorption , Humans , Hydrogen-Ion Concentration , Photoelectron Spectroscopy , Polymers , Uranium/analysis
12.
Chemistry ; 26(37): 8308-8313, 2020 Jul 02.
Article in English | MEDLINE | ID: mdl-32301132

ABSTRACT

A new catalytic enantioselective hydroarylation of unactivated olefins is developed that provides rapid access to functionalized chiral dihydrobenzofurans with good yields and excellent enantioselectivities. Simple aromatic ketones or amides act as a directing group allowing the regioselective reaction at the more hindered ortho position. Tertiary benzylic stereocenters are obtained directly under mild reaction conditions and with complete atom economy from readily available starting materials.

13.
Chem Asian J ; 15(6): 899-903, 2020 Mar 16.
Article in English | MEDLINE | ID: mdl-32056350

ABSTRACT

The catalyst-free regioselective [3+2]-cycloaddition of α,ß-unsaturated N-arylnitrones with alkenes are developed. The series of synthetically important functionalized isoxazolidines are prepared in good to excellent yields by step economic pathway under ligand and transition-metal-free conditions. The regioselective cycloaddition pathway supported by control experiment and computational study.

14.
Org Lett ; 21(17): 7109-7113, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31453703

ABSTRACT

Gold-catalyzed diyne cycloisomerizations involving carbene/alkyne metathesis have been the focal point of attention for the past few years as it offers great potential to build complex polycyclic architectures. However, the design of novel cycloisomerizations has been mostly limited to 1,5/1,6- diynes and has remained very challenging to apply for higher 1,n-diynes. Herein, we disclose an unprecedented cycloisomerization of pyridine-bridged 1,8-diynes involving carbene/alkyne metathesis to access luminescent cycl[3.2.2]azines.

15.
Chemistry ; 25(40): 9456-9463, 2019 Jul 17.
Article in English | MEDLINE | ID: mdl-31038842

ABSTRACT

A highly selective copper-catalyzed trifunctionalization of allenes has been established based on diborylation/cyanation with bis(pinacolato)diboron (B2 pin2 ) and N-cyano-N-phenyl-p-toluenesulfonamide (NCTS). The Cu-catalyzed trifunctionalization of terminal allenes is composed of three catalytic reactions (first borocupration, electrophilic cyanation, and second borocupration) that provide a densely functionalized product with regio-, chemo- and diastereoselectivity. Allene substrates have multiple reaction-sites, and the selectivities are determined by the suitable interactions (e.g., electronic and steric demands) between the catalyst and substrates. We employed DFT calculations to understand the cascade copper-catalyzed trifunctionalization of terminal allenes, providing densely-functionalized organic molecules with outstanding regio-, chemo- and diastereoselectivity in high yields. The selectivity challenges presented by cumulated π-systems are addressed by systematic computational studies; these give insight to the catalytic multiple-functionalization strategies and explain the high selectivities that we see for these reactions.

16.
Org Lett ; 21(1): 335-339, 2019 01 04.
Article in English | MEDLINE | ID: mdl-30586309

ABSTRACT

A strategy for expedient synthesis of 3-substituted chromones from easily available o-hydroxyarylenaminones and diazo compounds has been developed. Carefully conducted experimental and computational studies led us to propose an uncommon mechanistic pathway involving the hydroxyl group assisted alkylation of enaminones with in situ generated gold carbenes.

17.
J Am Chem Soc ; 140(32): 10289-10296, 2018 08 15.
Article in English | MEDLINE | ID: mdl-30032611

ABSTRACT

The cationic Ru-H complex was found to be an effective catalyst for the dehydrative C-H coupling of phenols with ketones to form the trisubstituted olefin products. The coupling of phenol with linear ketones led to highly stereoselective formation of the ( Z)-olefin products. The dehydrative coupling of phenol with enones and diones efficiently formed the benzopyrene and related oxacyclic derivatives. The reaction of 3,5-dimethoxyphenol with cyclohexanone-2,2,6,6- d4 showed a significant H/D exchange to both vinyl and α-CH2 positions on the olefin product (72-75% D). A significant carbon isotope effect was observed on the ortho-arene carbon of the olefin product. The free energies of intermediate species for the entire catalytic cycle were successfully computed by using the DFT method. The DFT study revealed that the E/ Z stereoselectivity is a result of the energy difference in the insertion step of ortho-metalated phenol to an enol form of the ketone substrate (ΔΔ E = 9.6 kcal/mol). The coupling method provides a direct catalytic C-H olefination method for ketones to form trisubstituted olefins without employing any reactive reagents or forming any wasteful byproducts.


Subject(s)
Alkenes/chemical synthesis , Ketones/chemistry , Phenols/chemistry , Ruthenium/chemistry , Alkenes/chemistry , Catalysis , Computer Simulation , Models, Molecular , Molecular Structure
18.
Angew Chem Int Ed Engl ; 57(7): 1978-1981, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29338114

ABSTRACT

The zirconium methylidene (PNP)Zr=CH2 (OAr) (1) reacts with N3 Ad to give two products (PNP)Zr=NAd(OAr) (2) and (PNP)Zr(η2 -N=NAd)(N=CH2 )(OAr) (3), both resulting from a common cycloaddition intermediate (PNP)Zr(CH2 N3 Ad)(OAr) (A). Using a series of control experiments in combination with DFT calculations, it was found that 2 results from a nitrene by a carbene metathesis reaction in which N2 acts as a delivery vehicle and forms N2 CH2 as a side product. In the case of 3, N-N bond splitting of the azide at the α-position allowed the isolation of a rare example of a parent ketimide complex of zirconium. Isotopic labeling studies and solid-state X-ray analysis are presented for 2 and 3, in addition to an independent synthesis for the former.

19.
Nat Chem ; 9(11): 1126-1132, 2017 11.
Article in English | MEDLINE | ID: mdl-29064500

ABSTRACT

Selectively converting linear alkanes to α-olefins under mild conditions is a highly desirable transformation given the abundance of alkanes as well as the use of olefins as building blocks in the chemical community. Until now, this reaction has been primarily the remit of noble-metal catalysts, despite extensive work showing that base-metal alkylidenes can mediate the reaction in a stoichiometric fashion. Here, we show how the presence of a hydrogen acceptor, such as the phosphorus ylide, when combined with the alkylidene complex (PNP)Ti=CHtBu(CH3) (PNP=N[2-P(CHMe2)2-4-methylphenyl]2-), catalyses the dehydrogenation of cycloalkanes to cyclic alkenes, and linear alkanes with chain lengths of C4 to C8 to terminal olefins under mild conditions. This Article represents the first example of a homogeneous and selective alkane dehydrogenation reaction using a base-metal titanium catalyst. We also propose a unique mechanism for the transfer dehydrogenation of hydrocarbons to olefins and discuss a complete cycle based on a combined experimental and computational study.

20.
J Org Chem ; 82(8): 4342-4351, 2017 04 21.
Article in English | MEDLINE | ID: mdl-28378576

ABSTRACT

Discovered by Hugo Schiff, condensation between amine and aldehyde represents one of the most ubiquitous reactions in chemistry. This classical reaction is widely used to manufacture pharmaceuticals and fine chemicals. However, the rapid and reversible formation of Schiff base prohibits formation of alternative products, of which benzoxazinones are an important class. Therefore, manipulating the reactivity of two partners to invert the course of this reaction is an elusive target. Presented here is a synthetic strategy that regulates the sequence of Schiff base reaction via weak secondary interactions. Guided by the computational models, reaction between 2,3,4,5,6-pentafluoro-benzaldehyde with 2-amino-6-methylbenzoic acid revealed quantitative (99%) formation of 5-methyl-2-(perfluorophenyl)-1,2-dihydro-4H-benzo[d][1,3]oxazin-4-one (15). Electron donating and electron withdrawing ortho-substituents on 2-aminobenzoic acid resulted in the production of benzoxazinones 9-36. The mode of action was tracked using low temperature NMR, UV-vis spectroscopy, and isotopic (18O) labeling experiments. These spectroscopic mechanistic investigations revealed that the hemiaminal intermediate is arrested by the hydrogen-bonding motif to yield benzoxazinone. Thus, the mechanistic investigations and DFT calculations categorically rule out the possibility of in situ imine formation followed by ring-closing, but support instead hydrogen-bond assisted ring-closing to prodrugs. This unprecedented reaction represents an interesting and competitive alternative to metal catalyzed and classical methods of preparing benzoxazinone.

SELECTION OF CITATIONS
SEARCH DETAIL
...