Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Saudi J Biol Sci ; 30(1): 103497, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36439961

ABSTRACT

Agricultural crops especially fruit trees are constrained by edaphic stresses in shallow soils with low water retention and poor fertility. Therefore, interventions of shifting to trench planting for better root anchorage and replacing the filling soil were evaluated for 8 years in dragon fruit (Hylocereus undatus) cultivated in Deccan Plateau of peninsular India. When averaged for last 5-years, 44 % higher fruit yield (18.2 ± 1.0 Mg ha-1) was harvested from trees planted in trenches filled with 1:1 mixture (T-mixed) of native soil (loamy sand with 26.7 % stones (>2mm), field capacity, FC 0.20 cm3 cm-3; organic carbon, OC 0.17 %; Av-N 54.6 kg ha-1) and a black soil (clay 54.4 %; FC 0.42 cm3 cm-3; OC 0.70 %; Av-N 157.1 kg ha-1) than the recommended pit planting (12.4 ± 1.2 Mg ha-1). Improvements in fruit yields with trenches filled with black (T-black) and native (T-native) soil were 32 and 13 %, respectively. Yield losses (total- marketable yield) were reduced by 40, 20 and 18 % over pit method with T-mixed, T-black and T-native soil, respectively. Marketable quality attributes like fruit weight, fruit size metrics and pulp/peel content were further improved under T-mixed soil. Accumulation of total soluble solids (TSS), sugar content, phenolic and flavonoid compounds were higher in fruits from T-native soil. During storage, fruits from T-native soil and pit planting exhibited minimum physiological weight loss and retained more firmness, TSS, sugars, titratable acidity, phenolic-flavonoids contents, FARP and DPPH activities. T-mixed soil provided better hydrozone and nutrients for resilience of fruit plants while protecting from aeration problems envisaged in poorly drained black soils. With B:C ratio (1.85) and lower payback period (4-years), T-mixed soil showed superior economic viability. Therefore, soil management module of planting in trenches filled-in with mixture of native and black soils can be recommended to boost productivity of fruits from shallow soils under water scarce degraded regions without penalising agro-ecosystem.

2.
Inorg Chem ; 58(5): 2965-2978, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30742425

ABSTRACT

The self-assembly of Xantphos-capped M(OTf)2 (M = cis-[M'(Xantphos)]2+; M' = Pd, Pt) with bridging ligands 1,4-benezenedithiol or 4,4'-biphenyldithiol has been investigated. The reactions have yielded complexes [M{S(C6H4) nSH}]2(OTf)2 (I) and [M2{S(C6H4) nS}]2(OTf)4 (II) ( n = 1 or 2). The equilibrium between I and II has been established in platinum complexes for n = 2, whereas the analogous Pd complex exclusively exist as II. These results are different from our previously reported dppe or triethyl phosphine-capped complexes which showed only type II. The same reaction with 1,3-benezenedithiol lead to the complex [M2(SC6H4SSC6H4S)](OTf)2 (III), containing a S-S bond between two thiolate ligands, formed via a complex of type I in solution. Characterization of the complexes was accomplished by NMR spectroscopy, UV-vis spectroscopy and mass spectrometry, and X-ray crystallography. Density functional calculations were performed to estimate the relative stability of three types of complexes. The palladium complexes are excellent catalysts in Suzuki C-C cross coupling reactions under mild conditions, and can be reused eight times without losing significant yield. The activity of the Pd catalysts derived from three dithiol ligand follows opposite trend of the stability as III > II > I. The comparative catalytic activity of the tetranuclear Pd complexes (II) of bis-phosphines of varied bite angles, including the structurally characterized [Pd2(dppf)2(SC12H8S)]2(OTf)4 has also been demonstrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...