Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 244: 116116, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38537542

ABSTRACT

EC5026 is a novel soluble epoxide hydrolase inhibitor being developed clinically to treat neuropathic pain and inflammation. In the current study, we employed the LC-ESI-Q-TOF-MS/MS technique to identify four in-vivo phase-I metabolites of EC5026 in rat model, out of which three were found to be novel. The identified metabolites include aliphatic hydroxylation, di-hydroxylation, terminal desaturation, and carboxylation. No phase-II metabolites were found. The pharmacokinetic profile of identified metabolites was established after a single oral dose of EC5026 to Wistar rats. The Tmax of the drug and metabolites were found to be in the range of 1-2 hours and 4-12 hours, respectively. The major metabolites M1 and M2 were found to have more than 2-fold (263.87% AUC) and equivalent exposure (96.33% AUC) compared to the parent drug, respectively. Further, the docking study revealed that the mono-hydroxylated and terminally desaturated metabolites possess better binding affinity than the parent drug. Therefore, these metabolites may hold sEH inhibition potential and can be followed through future research.


Subject(s)
Epoxide Hydrolases , Rats, Wistar , Tandem Mass Spectrometry , Epoxide Hydrolases/antagonists & inhibitors , Epoxide Hydrolases/metabolism , Animals , Rats , Tandem Mass Spectrometry/methods , Male , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Chromatography, Liquid/methods , Hydroxylation , Administration, Oral , Spectrometry, Mass, Electrospray Ionization/methods
2.
Regul Toxicol Pharmacol ; 139: 105355, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36792049

ABSTRACT

N-nitrosamines are carcinogenic impurities most commonly found in groundwater, treated water, foods, beverages and consumer products. The recent discovery of N-nitrosamines in pharmaceutical products and subsequent recalls pose a significant health risk to patients. Initial investigation by the regulatory agency identified Active Pharmaceutical Ingredients (API) as a source of contamination. However, N-nitrosamine formation during API synthesis is a consequence of numerous factors like chemistry selection for synthesis, contaminated solvents and water. Furthermore, apart from API, N-nitrosamines have also been found to embed in the final product due to degradation during formulation processing or storage through contaminated excipients and printing inks. The landscape of N-nitrosamine contamination of pharmaceutical products is very complex and needs a comprehensive compilation of sources responsible for N-nitrosamine contamination of pharmaceutical products. Therefore, this review aims to extensively compile all the reported and plausible sources of nitrosamine impurities in pharmaceutical products. The topics like risk assessment and quantitative strategies to estimate nitrosamines in pharmaceutical products are out of the scope of this review.


Subject(s)
Nitrosamines , Humans , Carcinogens , Water , Pharmaceutical Preparations
SELECTION OF CITATIONS
SEARCH DETAIL
...