Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 361: 237-244, 2019 01 05.
Article in English | MEDLINE | ID: mdl-30199823

ABSTRACT

In this work, we firstly examined the technical feasibility of geopolymer synthesis from the coal fly ash with high iron oxide (48.84 wt.%) and calcium oxide (22.15 wt.%) contents. The heat resistance of geopolymer was represented by the dry weight loss which ranged from 2.5 to 4.9% and was better than that (11.7%) of OPC. However, the high iron oxide content made the acid resistance (13-14%) of geopolymer inferior to OPC. The economics of geopolymer production changes significantly upon the variation in the arrangement of material use and geopolymer price. The costs of Na2SiO3 and NaOH and the benefit of geopolymer selling were the major factors affecting the economic feasibility of geopolymer production. When the Na2SiO3 price was around 400 USD/ton, the geopolymer production will be profitable even if the geopolymer price was as low as 50 USD/ton. It is possible to improve the economics of geopolymer production by varying the arrangement of material use while not impairing the performance of geopolymer.

2.
J Hazard Mater ; 321: 62-72, 2017 Jan 05.
Article in English | MEDLINE | ID: mdl-27607934

ABSTRACT

In this work, carbon black waste - a hazardous solid residue generated from gasification of crude oil bottom in refineries - was successfully used for making an absorbent material. However, since the carbon black waste also contains significant amounts of heavy metals (especially nickel and vanadium), chemical leaching was first used to remove these hazardous impurities from the carbon black waste. Acid leaching with nitric acid was found to be a very effective method for removal of both nickel and vanadium from the carbon black waste (i.e. up to 95% nickel and 98% vanadium were removed via treatment with 2M nitric acid for 1h at 20°C), whereas alkali leaching by using NaOH under the same condition was not effective for removal of nickel (less than 10% nickel was removed). Human lung cells (MRC-5) were then used to investigate the toxicity of the carbon black waste before and after leaching. Cell viability analysis showed that the leachate from the original carbon black waste has very high toxicity, whereas the leachate from the treated samples has no significant toxicity. Finally, the efficacy of the carbon black waste treated with HNO3 as an absorbent for dye removal was investigated. This treated carbon black waste has high adsorption capacity (∼361.2mg dye/g carbonblack), which can be attributed to its high specific surface area (∼559m2/g). The treated carbon black waste with its high adsorption capacity and lack of cytotoxicity is a promising adsorbent material. Moreover, the carbon black waste was found to show high electrical conductivity (ca. 10S/cm), making it a potentially valuable source of conductive material.


Subject(s)
Hazardous Waste/analysis , Nickel/isolation & purification , Refuse Disposal/methods , Soot/chemistry , Vanadium/isolation & purification , Adsorption , Cell Line , Cell Survival/drug effects , Fibroblasts/drug effects , Humans , Lung/cytology , Lung/drug effects , Particle Size , Soot/toxicity , Surface Properties
3.
Bioresour Technol ; 200: 350-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26512858

ABSTRACT

In this work, activated carbon (AC) as an effective and low-cost adsorbent was successfully prepared from carbon residue (or char, one of the by-products from woody biomass gasification) via physical activation. The surface area of char was significantly increased from 172.24 to 776.46m(2)/g after steam activation at 900°C. The obtained activated carbons were then employed for the adsorption of dye (Rhodamine B) and it was found that activated carbon obtained from steam activation exhibited the highest adsorption capability, which is mainly attributed to the higher surface area and the abundance of hydroxyl (-OH) and carboxyl (-COOH) groups on the activated carbon surface. Moreover, it was also found that the adsorption capability significantly increased under the basic condition, which can be attributed to the increased electrostatic interaction between the deprotonated (negatively charged) activated carbon and dye molecules. Furthermore, the equilibrium data were fitted into different adsorption isotherms and found to fit well with Langmuir model (indicating that dye molecules form monolayer coverage on activated carbon) with a maximum monolayer adsorption capability of 189.83mg/g, whereas the adsorption kinetics followed the pseudo-second-order kinetics.


Subject(s)
Biomass , Carbon/chemistry , Charcoal/chemistry , Coloring Agents/chemistry , Rhodamines/chemistry , Waste Disposal, Fluid/methods , Adsorption , Environmental Pollutants/chemistry , Hydrogen-Ion Concentration , Kinetics , Static Electricity , Temperature , Thermodynamics , Water Pollutants, Chemical/analysis
4.
Waste Manag ; 36: 241-55, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25532673

ABSTRACT

As the demand for fossil fuels and biofuels increases, the volume of ash generated will correspondingly increase. Even though ash disposal is now strictly regulated in many countries, the increasing volume of ash puts pressure on landfill sites with regard to cost, capacity and maintenance. In addition, the probability of environmental pollution from leakage of bottom ash leachate also increases. The main aim of this research is to investigate the toxicity of bottom ash, which is an unavoidable solid residue arising from biomass gasification, on human cells in vitro. Two human cell lines i.e. HepG2 (liver cell) and MRC-5 (lung fibroblast) were used to study the toxicity of the bottom ash as the toxins in the bottom ash may enter blood circulation by drinking the contaminated water or eating the food grown in bottom ash-contaminated water/soil and the toxic compounds may be carried all over the human body including to important organs such as lung, liver, kidney, and heart. It was found that the bottom ash extract has a high basicity (pH = 9.8-12.2) and a high ionic strength, due to the presence of alkali and alkaline earth metals e.g. K, Na, Ca and Mg. Moreover, it also contains concentrations of heavy metals (e.g. Zn, Co, Cu, Fe, Mn, Ni and Mo) and non-toxic organic compounds. Although human beings require these trace elements, excessive levels can be damaging to the body. From the analyses of cell viability (using MTS assay) and morphology (using fluorescence microscope), the high toxicity of the gasification bottom ash extract could be related to effects of high ionic strength, heavy metals or a combination of these two effects. Therefore, our results suggest that the improper disposal of the bottom ash wastes arising from gasification can create potential risks to human health and, thus, it has become a matter of urgency to find alternative options for the disposal of bottom ash wastes.


Subject(s)
Cell Survival/drug effects , Coal Ash/toxicity , Incineration , Sewage , Wood/toxicity , Cell Line , Cell Shape/drug effects , Hep G2 Cells , Humans , Metals/toxicity , Organic Chemicals/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Refuse Disposal
SELECTION OF CITATIONS
SEARCH DETAIL
...