Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 9(1)2020 01 13.
Article in English | MEDLINE | ID: mdl-31941072

ABSTRACT

Glutamine Synthetase 1 (GS1) is a key enzyme that catalyzes the ATP-dependent synthesis of l-glutamine from l-glutamate and is also member of the Glutamate Glutamine Cycle, a complex physiological process between glia and neurons that controls glutamate homeostasis and is often found compromised in neurodegenerative diseases including Huntington's disease (HD). Here we report that the expression of GS1 in neurons ameliorates the motility defects induced by the expression of the mutant Htt, using a Drosophila model for HD. This phenotype is associated with the ability of GS1 to favor the autophagy that we associate with the presence of reduced Htt toxic protein aggregates in neurons expressing mutant Htt. Expression of GS1 prevents the TOR activation and phosphorylation of S6K, a mechanism that we associate with the reduced levels of essential amino acids, particularly of arginine and asparagine important for TOR activation. This study reveals a novel function for GS1 to ameliorate neuronal survival by changing amino acids' levels that induce a "starvation-like" condition responsible to induce autophagy. The identification of novel targets that inhibit TOR in neurons is of particular interest for the beneficial role that autophagy has in preserving physiological neuronal health and in the mechanisms that eliminate the formation of toxic aggregates in proteinopathies.


Subject(s)
Autophagy , Disease Models, Animal , Glutamate-Ammonia Ligase/metabolism , Huntington Disease/metabolism , Huntington Disease/pathology , Lysosomes/metabolism , Neurons/metabolism , Animals , Drosophila melanogaster , Glutamate-Ammonia Ligase/genetics , Huntington Disease/genetics , Mutation , Neurons/pathology
2.
Genes Dev ; 33(13-14): 844-856, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31123065

ABSTRACT

The Piwi-interacting RNA (piRNA) pathway is a small RNA-based immune system that silences mobile genetic elements in animal germlines. piRNA biogenesis requires a specialized machinery that converts long single-stranded precursors into small RNAs of ∼25-nucleotides in length. This process involves factors that operate in two different subcellular compartments: the nuage/Yb body and mitochondria. How these two sites communicate to achieve accurate substrate selection and efficient processing remains unclear. Here, we investigate a previously uncharacterized piRNA biogenesis factor, Daedalus (Daed), that is located on the outer mitochondrial membrane. Daed is essential for Zucchini-mediated piRNA production and the correct localization of the indispensable piRNA biogenesis factor Armitage (Armi). We found that Gasz and Daed interact with each other and likely provide a mitochondrial "anchoring platform" to ensure that Armi is held in place, proximal to Zucchini, during piRNA processing. Our data suggest that Armi initially identifies piRNA precursors in nuage/Yb bodies in a manner that depends on Piwi and then moves to mitochondria to present precursors to the mitochondrial biogenesis machinery. These results represent a significant step in understanding a critical aspect of transposon silencing; namely, how RNAs are chosen to instruct the piRNA machinery in the nature of its silencing targets.


Subject(s)
Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mitochondria/metabolism , RNA Helicases/metabolism , RNA, Small Interfering/biosynthesis , Animals , Cell Line , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Gene Knockdown Techniques , Protein Binding , Protein Transport , RNA, Small Interfering/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...