Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 22507, 2023 12 15.
Article in English | MEDLINE | ID: mdl-38110443

ABSTRACT

In addition to genetic adaptative mechanisms, plants retrieve additional help from the surrounding microbiome, especially beneficial bacterial strains (PGPB) that contribute to plant fitness by modulating plant physiology to fine-tune adaptation to environmental changes. The aim of this study was to determine the mechanisms by which the PGPB Bacillus G7 stimulates the adaptive mechanisms of Olea europaea plantlets to high-salinity conditions, exploring changes at the physiological, metabolic and gene expression levels. On the one hand, G7 prevented photosynthetic imbalance under saline stress, increasing the maximum photosynthetic efficiency of photosystem II (Fv/Fm) and energy dissipation (NPQ) and protecting against photooxidative stress. On the other hand, despite the decrease in effective PSII quantum yield (ΦPSII), net carbon fixation was significantly improved, resulting in significant increases in osmolytes and antioxidants, suggesting an improvement in the use of absorbed energy. Water use efficiency (WUE) was significantly improved. Strong genetic reprogramming was evidenced by the transcriptome that revealed involvement of the ABA-mediated pathway based on upregulation of ABA synthesis- and ABA-sensing-related genes together with a strong downregulation of the PLC2 phosphatase family, repressors of ABA-response elements and upregulation of ion homeostasis-related genes. The ion homeostasis response was activated faster in G7-treated plants, as suggested by qPCR data. All these results reveal the multitargeted improvement of plant metabolism under salt stress by Bacillus G7, which allows growth under water limitation conditions, an excellent trait to develop biofertilizers for agriculture under harsh conditions supporting the use of biofertilizers among the new farming practices to meet the increasing demand for food.


Subject(s)
Bacillus , Olea , Olea/metabolism , Bacillus/metabolism , Water/metabolism , Photosynthesis/physiology , Oxidative Stress , Salt Stress , Stress, Physiological
2.
Front Microbiol ; 13: 1005865, 2022.
Article in English | MEDLINE | ID: mdl-36267177

ABSTRACT

Improvement of plant adaptation by beneficial bacteria (PGPB) may be achieved by triggering multiple pathways to overcome the environmental stress on plant's growth cycle, activating plant's metabolism. The present work reports the differential ability of three Bacillus strains to trigger olive tree metabolism, among which, only H47 was outstanding increasing iridoid and flavonol concentration. One-year old olive seedlings grown open air, under harsh conditions of water shortage in saline soils, were root-inoculated with three Bacillus PGPB strains throughout a 12-month period after which, photosynthesis was determined; photosynthetic pigments and bioactive secondary metabolites (iridoids and flavonols) were analyzed, and a study of gene expression of both pathways involved was undertaken to unravel molecular targets involved in the activation. All three strains increased plant fitness based on photosynthetic values, increasing energy dissipation capacity to lower oxidative stress; only H47 increased CO2 fixation and transpiration. Bacillus H47 was found to trigger synthases in the DOXP pathway (up to 5-fold in DOXP-synthase, 3.5-fold in Iridoid synthase, and 2-fold in secologanin synthase) associated to a concomitant increase in iridoids (up to 5-fold in oleuropein and 2-fold in its precursor secologanin). However, despite the 2-fold increases detected in the two predominant flavonols, gene expression was not enhanced, suggesting involvement of a pulse activation model proposed for innate immunity. Furthermore, the activity of leaf extracts to inhibit Angiotensin Converting Enzyme was evaluated, to explore further uses of plant debris with higher added value. Despite the increases in iridoids, leaf extracts from H47 did not increase ACE inhibition, and still, increased antihypertensive potential in oil obtained with this strain is to be explored, as leaves are the source for these metabolites which further translocate to fruits. In summary, Bacillus H47 is an effective strain to increase plant adaptation to dry and saline environments, activates photosynthesis and secondary metabolism in olive tree.

3.
Plants (Basel) ; 11(20)2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36297772

ABSTRACT

Climate change consequences for agriculture involve an increase of saline soils which results in lower crop yields due to increased oxidative stress in plants. The present study reports the use of Plant Growth Promoting Bacteria (PGPB) as a tool to modulate plant innate mechanisms of adaptation to water stress (salinity and drought) in one year-old olive plantlets var. Arbosana and Arbequina. Integration of external changes in plants involve changes in Reactive Oxygen Species (ROS) that behave as signals to trigger plant adaptative mechanisms; however, they become toxic in high concentrations. For this reason, plants are endowed with antioxidant systems to keep ROS under control. So, the working hypothesis is that specific beneficial strains will induce a systemic response able to modulate oxidative stress and improve plant adaptation to water stress. Ten strains were assayed, evaluating changes in photosynthesis, pigments, ROS scavenging enzymes and antioxidant molecules, osmolytes and malondialdehyde, as oxidative stress marker. Photosynthesis and photosynthetic pigments were the most affected variables. Despite the specific response of each variety, the favorite targets of PGPBs to improve plant fitness were photosynthetic pigments and the antioxidant pools of glutathione and ascorbate. Our results show the potential of PGPBs to improve plant fitness modulating oxidative stress.

4.
Front Microbiol ; 12: 672751, 2021.
Article in English | MEDLINE | ID: mdl-34489881

ABSTRACT

A novel Pseudomonas, designated strain BBB001T, an aerobic, rod-shaped bacterium, was isolated from the rhizosphere of Nicotiana glauca in Las Palmas Gran Canaria, Spain. Genomic analysis revealed that it could not be assigned to any known species of Pseudomonas, so the name Pseudomonas palmensis sp. nov. was proposed. A 16S rRNA gene phylogenetic analysis suggested affiliation to the Pseudomonas brassicae group, being P. brassicae MAFF212427 T the closest related type strain. Upon genomic comparisons of both strains, all values were below thresholds established for differentiation: average nucleotide identity (ANI, 88.29%), average amino acid identity (AAI, 84.53%), digital DNA-DNA hybridization (dDDH, 35.4%), and TETRA values (0.98). When comparing complete genomes, a total of 96 genes present exclusively in BBB001T were identified, 80 of which appear associated with specific subsystems. Phenotypic analysis has shown its ability to assimilate glucose, potassium gluconate, capric acid malate, trisodium citrate, and phenylacetic acid; it was oxidase positive. It is able to produce auxins and siderophores in vitro; its metabolic profile based on BIOLOG Eco has shown a high catabolic capacity. The major fatty acids accounting for 81.17% of the total fatty acids were as follows: C16:0 (33.29%), summed feature 3 (22.80%) comprising C16:1 ω7c and C16:1 ω6c, summed feature 8 (13.66%) comprising C18:1 ω7c, and C18:1ω6c and C17:0 cyclo (11.42%). The ability of this strain to improve plant fitness was tested on tomato and olive trees, demonstrating a great potential for agriculture as it is able to trigger herbaceous and woody species. First, it was able to improve iron nutrition and growth on iron-starved tomatoes, demonstrating its nutrient mobilization capacity; this effect is related to its unique genes related to iron metabolism. Second, it increased olive and oil yield up to 30% on intensive olive orchards under water-limiting conditions, demonstrating its capacity to improve adaptation to adverse conditions. Results from genomic analysis together with differences in phenotypic features and chemotaxonomic analysis support the proposal of strain BBB001T (=LMG 31775T = NCTC 14418T) as the type strain of a novel species for which the name P. palmensis sp. nov is proposed.

5.
Sci Rep ; 11(1): 11091, 2021 05 27.
Article in English | MEDLINE | ID: mdl-34045525

ABSTRACT

Biologic and targeted synthetic disease-modifying antirheumatic drugs (ts/bDMARDs) play a pivotal role in the treatment of rheumatoid arthritis (RA), psoriatic arthritis (PsA), and ankylosing spondylitis (AS). Persistence of therapy provides an index of a drug's overall effectiveness. The objective of the study was to identify factors associated with discontinuation of ts/bDMARDs in a real-world dataset. The study population comprised patients diagnosed with RA, PsA, and AS included in the BIOBADASER registry for whom follow-up data were available until November 2019. Patient features and treatment data were included in the analysis. The Kaplan-Meier method was used to study survival of the different drugs according to the reason for discontinuation. Factors associated with discontinuation were studied using Cox regression models and bivariate and multivariate analyses. P values of less than 0.05 were regarded as statistically significant. The study population comprised 4,752 patients who received a total of 8,377 drugs, of which 4,411 (52.65%) were discontinued. The Kaplan-Meier curves showed that survival for first-line treatment was greater in all 3 groups (p < 0.001). Patients with RA had a greater risk of discontinuation if they were younger (HR, 0.99; 95% CI 0.99-1.00), if they were receiving anti-TNFα agents (HR, 0.61; 95% CI 0.54-0.70), and if they had more comorbid conditions (HR, 1.09; 95% CI 1.00-1.17). Patients with PsA had a higher risk if they were women (HR, 1.36; 95% CI 1.15-1.62) and if they were receiving other ts/bDMARDs (HR, 1.29; 95% CI 1.05-1.59). In patients with AS, risk increased with age (HR, 1.01; 95% CI 1.00-1.02), as did the number of comorbid conditions (HR, 1.27; 95% CI 1.12-1.45). The factors that most affected discontinuation of ts/bDMARDs were line of treatment, age, type of drug, sex, comorbidity and the year of initiation of treatment. The association with these factors differed with each disease, except for first-line treatment, which was associated with a lower risk of discontinuation in all 3 diseases.


Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Psoriatic/drug therapy , Arthritis, Rheumatoid/drug therapy , Biological Products/therapeutic use , Spondylitis, Ankylosing/drug therapy , Adult , Aged , Female , Humans , Male , Middle Aged , Registries , Retrospective Studies , Risk Factors , Withholding Treatment
6.
Plants (Basel) ; 9(8)2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32806693

ABSTRACT

In this work, the metabolic elicitors extracted from the beneficial rhizobacterium Pseudomonas fluorescens N 21.4 were sequentially fragmented by vacuum liquid chromatography to isolate, purify and identify the compounds responsible for the extraordinary capacities of this strain to induce systemic resistance and to elicit secondary defensive metabolism in diverse plant species. To check if the fractions sequentially obtained were able to increase the synthesis of isoflavones and if, therefore, they still maintained the eliciting capacity of the live strain, rapid and controlled experiments were done with soybean seeds. The optimal action concentration of the fractions was established and all of them elicited isoflavone secondary metabolism-the fractions that had been extracted with n-hexane being more effective. The purest fraction was the one with the highest eliciting capacity and was also tested in Arabidopsis thaliana seedlings to induce systemic resistance against the pathogen Pseudomonas syringae pv. tomato DC 3000. This fraction was then analyzed by UHPLC/ESI-QTOF-MS, and an alkaloid, two amino lipids, three arylalkylamines and a terpenoid were tentatively identified. These identified compounds could be part of commercial plant inoculants of biological and sustainable origin to be applied in crops, due to their potential to enhance the plant immune response and since many of them have putative antibiotic and/or antifungal potential.

7.
PLoS One ; 15(5): e0232626, 2020.
Article in English | MEDLINE | ID: mdl-32374762

ABSTRACT

The aim of this study is to determine the involvement of the flavonol-anthocyanin pathway on plant adaptation to biotic stress using the B.amyloliquefaciens QV15 to trigger blackberry metabolism and identify target genes to improve plant fitness and fruit quality. To achieve this goal, field-grown blackberries were root-inoculated with QV15 along its growth cycle. At fruiting, a transcriptomic analysis by RNA-Seq was performed on leaves and fruits of treated and non-treated field-grown blackberries after a sustained mildew outbreak; expression of the regulating and core genes of the Flavonol-Anthocyanin pathway were analysed by qPCR and metabolomic profiles by UHPLC/ESI-qTOF-MS; plant protection was found to be up to 88%. Overexpression of step-controlling genes in leaves and fruits, associated to lower concentration of flavonols and anthocyanins in QV15-treated plants, together with a higher protection suggest a phytoanticipin role for flavonols in blackberry; kempferol-3-O-rutinoside concentration was strikingly high. Overexpression of RuF3H (Flavonol-3-hidroxylase) suggests a pivotal role in the coordination of committing steps in this pathway, controlling carbon flux towards the different sinks. Furthermore, this C demand is supported by an activation of the photosynthetic machinery, and boosted by a coordinated control of ROS into a sub-lethal range, and associated to enhanced protection to biotic stress.


Subject(s)
Adaptation, Physiological , Anthocyanins/metabolism , Bacillus amyloliquefaciens/physiology , Cytochrome P-450 Enzyme System/physiology , Rubus/enzymology , Rubus/microbiology , Stress, Physiological , Cytochrome P-450 Enzyme System/genetics , Fruit/enzymology , Fruit/genetics , Fruit/microbiology , Gene Expression Regulation, Plant , Genes, Plant/genetics , Plant Leaves/enzymology , Plant Leaves/microbiology , Rubus/genetics
8.
J Agric Food Chem ; 68(22): 6170-6180, 2020 Jun 03.
Article in English | MEDLINE | ID: mdl-32383861

ABSTRACT

Beneficial rhizobacterium Pseudomonas fluorescens N 21.4 and its metabolic elicitors inoculated to cultivars of blackberry (Rubus spp. Var. Loch Ness) reinforced the plants' immune system and improved their fitness by increasing photosynthesis, decreasing oxidative stress, and activating pathogenesis-related proteins. They also triggered the leaves' flavonoid metabolism, enhancing the accumulation of beneficial phenolic compounds such as kaempferols and quercetin derivatives. The elicitation of leaf secondary metabolism allows one to take advantage of the blackberry leaves (a current crop waste), following the premises of the circular economy, to isolate and obtain high added value compounds. The results of this work suggest the use of N 21.4 and/or its metabolic elicitors as plant inoculants as an effective and economically and environmentally friendly agronomic alternative practice in the exploitation of blackberry crops to obtain plants with a better immune system and to revalorize the leaf pruning as a potential source of polyphenols.


Subject(s)
Flavonoids/metabolism , Plant Leaves/microbiology , Rubus/metabolism , Crops, Agricultural/metabolism , Crops, Agricultural/microbiology , Plant Leaves/metabolism , Rubus/microbiology , Secondary Metabolism
9.
Foods ; 9(1)2020 Jan 07.
Article in English | MEDLINE | ID: mdl-31935994

ABSTRACT

Global climate change has increased warming with a concomitant decrease in water availability and increased soil salinity, factors that compromise agronomic production. On the other hand, new agronomic developments using irrigation systems demand increasing amounts of water to achieve an increase in yields. Therefore, new challenges appear to improve plant fitness and yield, while limiting water supply for specific crops, particularly, olive trees. Plants have developed several innate mechanisms to overcome water shortage and the use of beneficial microorganisms to ameliorate symptoms appears as a challenging alternative. Our aim is to improve plant fitness with beneficial bacterial strains capable of triggering plant metabolism that targets several mechanisms simultaneously. Our secondary aim is to improve the content of molecules with bioactive effects to valorize pruning residues. To analyze bacterial effects on olive plantlets that are grown in saline soil, photosynthesis, photosynthetic pigments, osmolytes (proline and soluble sugars), and reactive oxygen species (ROS)-scavenging enzymes (superoxide dismutase-SOD and ascorbate peroxidase-APX) and molecules (phenols, flavonols, and oleuropein) were determined. We found photosynthetic pigments, antioxidant molecules, net photosynthesis, and water use efficiency to be the most affected parameters. Most strains decreased pigments and increased osmolytes and phenols, and only one strain increased the antihypertensive molecule oleuropein. All strains increased net photosynthesis, but only three increased water use efficiency. In conclusion, among the ten strains, three improved water use efficiency and one increased values of pruning residues.

10.
AoB Plants ; 11(5): plz049, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31632627

ABSTRACT

We evaluated the ability of metabolic elicitors extracted from Pseudomonas fluorescens N21.4 to induce systemic resistance (ISR) in Arabidopsis thaliana against the pathogen Pseudomonas syringae DC3000. Metabolic elicitors were obtained from bacteria-free culture medium with n-hexane, ethyl acetate and n-butanol in three consecutive extractions. Each extract showed plant protection activity. The n-hexane fraction was the most effective and was used to study the signal transduction pathways involved by evaluating expression of marker genes of the salicylic acid (SA) signalling pathway (NPR1, PR1, ICS and PR2) and the jasmonic acid/ethylene (JA/ET) signalling pathway (PDF1, MYC2, LOX2 and PR3). In addition, the level of oxidative stress was tested by determining the activity of enzymes related to the ascorbate-glutathione cycle. N-hexane extracts stimulated both pathways based on overexpression of ICS, PR1, PR2, PDF1 and LOX2 genes. In addition, activity of the pathogenesis-related proteins glucanase (PR2) and chitinase (PR3), lipoxygenase and polyphenol oxidase was enhanced together with an increased capacity to remove reactive oxygen species (ROS). This was associated with less oxidative stress as indicated by a decrease in malondialdehyde (MDA), suggesting a causative link between defensive metabolism against P. syringae and ROS scavenging.

11.
Front Plant Sci ; 8: 472, 2017.
Article in English | MEDLINE | ID: mdl-28428793

ABSTRACT

Blackberries (Rubus spp.) are among the high added value food products relevant for human health due to the increasing evidence of the beneficial effects of polyphenols, which are very abundant in these fruits. Interestingly, these compounds also play a role on plant physiology, being especially relevant their role in plant defense against biotic and abiotic stress. Hence, we hypothesize that since blackberry fruits have high amounts of flavonols and anthocyanins, leaves would also have high amounts of these compounds, and can be studied as a source of active molecules; furthermore, leaf synthesis would support their high contents in fruits. To explore this hypothesis, the present study reports a de novo transcriptome analysis on field grown blackberry leaves and fruits at the same time point, to establish the metabolic relationship of these compounds in both organs. Transcripts were aligned against Fragaria vesca genome, and genes were identified and annotated in different databases; tissue expression pattern showed 20,463 genes common to leaves and fruits, while 6,604 genes were significantly overexpressed only in fruits, while another 6,599 genes were significantly overexpressed in leaves, among which flavonol-anthocyanin transporter genes were present. Bioactives characterization indicated that total phenolics in leaves were three-fold, and flavonols were six-fold than in fruits, while concentration of anthocyanins was higher in fruits; HPLC-MS analysis indicated different composition in leaves and fruits, with cyanidin-3-glucoside as the only common compound identified. Next, RT-qPCR of the core genes in the flavonol anthocyanin pathway and regulatory MYB genes were carried out. Interestingly, genes in the flavonol-anthocyanin pathway and flavonol-transport families were overexpressed in leaves, consistent with the higher bioactive levels. On the other hand, transcription factors were overexpressed in fruits anticipating an active anthocyanin biosynthesis upon ripening. This suggests that, in addition to the biosynthesis taking place in the fruits during ripening, translocation of flavonols from leaves to fruits contributes to the high amounts of bioactives starting to accumulate in fruits.

12.
J Water Health ; 13(4): 1006-19, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26608762

ABSTRACT

An extensive microbiological study has been carried out in a membrane bioreactor fed with activated sludge and metal-working fluids. Functional diversity and dynamics of bacterial communities were studied with different approaches. Functional diversity of culturable bacterial communities was studied with different Biolog™ plates. Structure and dynamics of bacterial communities were studied in culturable and in non-culturable fractions using a 16S rRNA analysis. Among the culturable bacteria, Alphaproteobacteria and Gammaproteobacteria were the predominant classes. However, changes in microbial community structure were detected over time. Culture-independent analysis showed that Betaproteobacteria was the most frequently detected class in the membrane bioreactor (MBR) community with Zoogloea and Acidovorax as dominant genera. Also, among non-culturable bacteria, a process of succession was observed. Longitudinal structural shifts observed were more marked for non-culturable than for culturable bacteria, pointing towards an important role in the MBR performance. Microbial community metabolic abilities assessed with Biolog™ Gram negative, Gram positive and anaerobic plates also showed differences over time for Shannon's diversity index, kinetics of average well colour development, and the intensely used substrates by bacterial community in each plate.


Subject(s)
Bacteria/classification , Bioreactors/microbiology , Wastewater/microbiology , Water Microbiology , DNA, Bacterial/analysis , Metallurgy , Phylogeny , RNA, Ribosomal, 16S/analysis
13.
Plant Physiol Biochem ; 82: 9-16, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24869797

ABSTRACT

Glycine max (L.) Merr. plays a crucial role in both the field of food and the pharmaceutical industry due to their input as plant protein and to the benefits of isoflavones (IF) for health. In addition, IF play a key role in nodulation and plant defense and therefore, an increase in IF would be desirable for better field performance. IF are secondary metabolites and therefore, inducible, so finding effective agents to increase IF contents is interesting. Among these agents, plant growth promoting rhizobacteria (PGPR) have been used to trigger systemic induction of plant's secondary metabolism through their microbe associated molecular patterns (MAMPs) that fit in the plant's receptors to start a systemic response. The aim of this study was to evaluate the ability of 4 PGPR that had a contrasted effect on IF metabolism, to protect plants against biotic stress and to establish the relation between IF profile and the systemic response triggered by the bacteria. Apparently, the response involves a lower sensitivity to ethylene and despite the decrease in effective photosynthesis, growth is only compromised in the case of M84, the most effective in protection. All strains protected soybean against Xanthomonas axonopodis pv. glycines (M84 > N5.18 > Aur9>N21.4) and only M84 and N5.18 involved IF. N5.18 stimulated accumulation of IF before pathogen challenge. M84 caused a significant increase on IF only after pathogen challenge and N21.4 caused a significant increase on IF content irrespective of pathogen challenge. Aur9 did not affect IF. These results point out that all 4 strains have MAMPs that trigger defensive metabolism in soybean. Protection induced by N21.4 and Aur9 involves other metabolites different to IF and the role of IF in defence depends on the previous metabolic status of the plant and on the bacterial MAMP.


Subject(s)
Glycine max/metabolism , Glycine max/microbiology , Isoflavones/metabolism , Rhizobium/metabolism , Rhizobium/physiology , Xanthomonas axonopodis/pathogenicity , Gene Expression Regulation, Plant/physiology , Plant Diseases/immunology , Plant Diseases/microbiology
15.
Plant Physiol Biochem ; 74: 1-8, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24246668

ABSTRACT

The aim of this study was two-fold: first, to characterize blackberry fruits from Rubus sp. var. Lochness along the year, and secondly, to evaluate the ability of a Pseudomonas strain (N21.4) to improve fruit yield and quality under field conditions in production greenhouses throughout the year. The strain was root or leaf inoculated to blackberry plants and fruits were harvested in each season. Nutritional parameters, antioxidant potential and bioactive contents were determined; total fruit yield was recorded. Blackberries grown under short day conditions (autumn and winter) showed significantly lower °Brix values than fruits grown under long day conditions. Interestingly, an increase in fruit °Brix, relevant for quality, was detected after bacterial challenge, together with significant and sustained increases in total phenolics and flavonoids. Improvements in inoculated fruits were more evident from October through early March, when environmental conditions are worse. In summary, N21.4 is an effective agent to increase fruit quality and production along the year in blackberry; this is an environmentally friendly approach to increase fruit quality.


Subject(s)
Fruit/chemistry , Pseudomonas fluorescens/physiology , Rosaceae/chemistry , Fruit/microbiology , Rosaceae/microbiology , Seasons
16.
Plant Physiol Biochem ; 74: 133-40, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24296249

ABSTRACT

Ten PGPR from different backgrounds were assayed on Papaver somniferum var. Madrigal to evaluate their potential as biotic elicitors to increase alkaloid content under the rationale that some microbe associated molecular patterns (MAMPs) are able to trigger plant metabolism. First, the 10 strains and their culture media at two different concentrations were tested for their ability to trigger seed germination. Then, the best three strains were tested for their ability to increase seedling growth and alkaloid levels under greenhouse conditions. Only three strains and their culture media enhanced germination. Then, germination enhancing capacity of these best three strains, N5.18 Stenotrophomonas maltophilia, Aur9 Chryseobacterium balustinum and N21.4 Pseudomonas fluorescens was evaluated in soil. Finally, the three strains were applied on seedlings at two time points, by soil drench or by foliar spray. Photosynthesis was measured, plant height was recorded, capsules were weighted and alkaloids analyzed by HPLC. Only N5.18 delivered by foliar spray significantly increased plant height coupled to an increase in total alkaloids and a significant increase in opium poppy straw dry weight; these increases were supported by a better photosynthetic efficiency. The relative contents of morphine, thebaine, codeine and oripavine were affected by this treatment causing a significant increase in morphine coupled to a decrease in thebaine, demonstrating the effectivity of MAMPs from N5.18 in this plant species. Considering the increase in capsule biomass and alkaloids together with the acceleration of germination, strain N5.18 appears as a good candidate to elicit plant metabolism and consequently, to increase productivity of Papaver somniferum.


Subject(s)
Bacteria/metabolism , Germination , Papaver/metabolism , Rhizosphere , Alkaloids/metabolism , Culture Media , Papaver/microbiology , Papaver/physiology , Photosynthesis
17.
Plant Foods Hum Nutr ; 68(3): 299-305, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23918406

ABSTRACT

The effect of two bacterial strains to enhance bioactive contents (total phenolic compounds, total flavonoid compounds and isoflavones) and antioxidant activity on 3-day-old soybean sprouts were investigated. To identify bacterial determinants responsible for these effects, viable and UV-treated strains were delivered to wounded seeds at different concentration. Multivariate analysis performed with all the evaluated parameters indicated the different effectiveness of Stenotrophomonas maltophilia N5.18 and Pseudomonas fluorescens N21.4 based on different structural and metabolic determinants for each. N21.4 increased total phenolics and isoflavones from the genistein family, while N5.18 triggered biosynthesis of daidzein and genistein families coupled to a decrease in total phenolics, suggesting different molecular targets in the phenilpropanoid pathway. Only extracts from N5.18 treated seeds showed an improved antioxidant activity according to the ß-carotene bleaching prevention method. In summary, bioeffectors from both bacterial strains are effective tools to improve soybean sprouts quality; structural elicitors from N5.18 also enhanced antioxidant activity, being the best alternative for further development of a biotechnological procedure.


Subject(s)
Glycine max/metabolism , Isoflavones/analysis , Plant Shoots/metabolism , Pseudomonas fluorescens/physiology , Stenotrophomonas maltophilia/physiology , Antioxidants/analysis , Flavonoids/analysis , Multivariate Analysis , Phenols/analysis , Plant Shoots/chemistry , Pseudomonas fluorescens/radiation effects , Seeds/chemistry , Seeds/microbiology , Seeds/physiology , Glycine max/chemistry , Glycine max/growth & development , Stenotrophomonas maltophilia/radiation effects , Ultraviolet Rays
18.
Antonie Van Leeuwenhoek ; 104(3): 321-30, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23812968

ABSTRACT

Iron is one of the essential elements for a proper plant development. Providing plants with an accessible form of iron is crucial when it is scant or unavailable in soils. Chemical chelates are the only current alternative and are highly stable in soils, therefore, posing a threat to drinking water. The aim of this investigation was to quantify siderophores produced by two bacterial strains and to determine if these bacterial siderophores would palliate chlorotic symptoms of iron-starved tomato plants. For this purpose, siderophore production in MM9 medium by two selected bacterial strains was quantified, and the best was used for biological assay. Bacterial culture media free of bacteria (S) and with bacterial cells (BS), both supplemented with Fe were delivered to 12-week-old plants grown under iron starvation in hydroponic conditions; controls with full Hoagland solution, iron-free Hoagland solution and water were also conducted. Treatments were applied twice along the experiment, with a week in between. At harvest, plant yield, chlorophyll content and nutritional status in leaves were measured. Both the bacterial siderophore treatments significantly increased plant yield, chlorophyll and iron content over the positive controls with full Hoagland solution, indicating that siderophores are effective in providing Fe to the plant, either with or without the presence of bacteria. In summary, siderophores from strain Chryseobacterium C138 are effective in supplying Fe to iron-starved tomato plants by the roots, either with or without the presence of bacteria. Based on the amount of siderophores produced, an effective and economically feasible organic Fe chelator could be developed.


Subject(s)
Chryseobacterium/metabolism , Hydroponics/methods , Iron/metabolism , Siderophores/metabolism , Solanum lycopersicum/metabolism , Biomass , Chlorophyll/analysis , Solanum lycopersicum/growth & development , Plant Leaves/growth & development , Plant Leaves/metabolism
19.
Pharm Biol ; 50(10): 1201-9, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22900596

ABSTRACT

CONTEXT: Hypericum perforatum L. (Guttiferae) appears as an alternative treatment to mild and moderate depression and been traditionally used as a health enhancer based on the phytochemicals hyperforin and hypericin. However, field grown medicinal plants show variable levels of phytopharmaceuticals depending on environmental conditions. Elicitation is a good strategy to trigger secondary metabolism. OBJECTIVE: This study explored the ability of 6 rhizobacterial strains to trigger secondary metabolism in H. perforatum seedlings and molecular elicitors from the most effective strain N5.18 were tested in shoot cultures. MATERIALS AND METHODS: Hypericin and pseudohypericin were determined on seedlings and shoot cultures by HPLC. Three putative elicitors from bacterial culture media were assayed in three different concentrations. RESULTS: Strain N5.18 significantly increased hypericin up to 1.2 ppm and pseudohypericin up to 3.4 ppm, over controls (0.3 and 2.5 ppm, respectively) when delivered to seedlings. In shoot cultures, only pseudohypericin was detected (168.9 ppm) and significant increases were observed under the different elicitors, reaching values of 3164.8 ppm with small elicitors in the middle concentration. DISCUSSION AND CONCLUSION: Secondary metabolism in plants is highly inducible due to its role in plant communication and defense. Our findings demonstrate that some beneficial bacterial strains are able to trigger secondary metabolism in H. perforatum plants when delivered through the roots and bacterial determinants released to culture media are able to reproduce the effect in shoot cultures. Therefore, these elicitors have great potential to enhance phytopharmaceutical production.


Subject(s)
Bacteria/metabolism , Hypericum/metabolism , Perylene/analogs & derivatives , Anthracenes , Chromatography, High Pressure Liquid , Culture Media , Hypericum/chemistry , Hypericum/microbiology , Perylene/isolation & purification , Plant Shoots , Rhizosphere , Seedlings , Tissue Culture Techniques
20.
J Control Release ; 151(1): 74-82, 2011 Apr 10.
Article in English | MEDLINE | ID: mdl-21138749

ABSTRACT

Taking advantage from the development of SV30, a new analogue of the pro-apoptotic molecule HA14-1, the aim of this study was to functionally evaluate SV30 and to develop safe nanocarriers for its administration. By using an inversion phase process, 57nm organic solvent-free lipid nanocapsules loaded with SV30 (SV30-LNCs) were formulated. Biological performance of SV30 and SV30-LNCs were evaluated on F98 cells that express Bax and Bcl-2, through survival assays, HPLC, flow cytometry, confocal microscopy and spectral imaging. We observed that SV30 alone or in combination with paclitaxel, etoposide or beam radiation could trigger cell death in a similar fashion to HA14-1. Although partially blocked by Z-VAD-fmk, this effect was coincident to caspase-3 activation. Hence, we established that SV30-LNCs improved SV30 biological activity together with a potentiation of the mitochondrial membrane potential decrease. Interestingly, flow cytometry and confocal analysis indicated that SV30 itself conferred to LNCs improved mitochondrial targeting skills that may present a great interest toward the development of mitochondria targeted nanomedicines.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Benzopyrans/chemistry , Glioma/drug therapy , Lipids/chemistry , Mitochondria/metabolism , Nanocapsules/chemistry , Nitriles/chemistry , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacology , Caspase 3/metabolism , Cell Line, Tumor , Mitochondria/drug effects , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...