Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 13186, 2024 06 08.
Article in English | MEDLINE | ID: mdl-38851769

ABSTRACT

Social facilitation is a well-known phenomenon where the presence of organisms belonging to the same species enhances an individual organism's performance in a specific task. As far as fishes are concerned, most studies on social facilitation have been conducted in standing-water conditions. However, for riverine species, fish are most commonly located in moving waters, and the effects of hydrodynamics on social facilitation remain largely unknown. To bridge this knowledge gap, we designed and performed flume experiments where the behaviour of wild juvenile Italian riffle dace (Telestes muticellus) in varying group sizes and at different mean flow velocities, was studied. An artificial intelligence (AI) deep learning algorithm was developed and employed to track fish positions in time and subsequently assess their exploration, swimming activity, and space use. Results indicate that energy-saving strategies dictated space use in flowing waters regardless of group size. Instead, exploration and swimming activity increased by increasing group size, but the magnitude of this enhancement (which quantifies social facilitation) was modulated by flow velocity. These results have implications for how future research efforts should be designed to understand the social dynamics of riverine fish populations, which can no longer ignore the contribution of hydrodynamics.


Subject(s)
Exploratory Behavior , Swimming , Animals , Swimming/physiology , Exploratory Behavior/physiology , Behavior, Animal/physiology , Hydrodynamics , Fishes/physiology , Artificial Intelligence , Water Movements , Social Behavior
2.
APL Bioeng ; 6(2): 026102, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35540726

ABSTRACT

Ureteric stents are clinically deployed to restore urinary drainage in the presence of ureteric occlusions. They consist of a hollow tube with multiple side-holes that enhance urinary drainage. The stent surface is often subject to encrustation (induced by crystals-forming bacteria such as Proteus mirabilis) or particle accumulation, which may compromise stent's drainage performance. Limited research has, however, been conducted to evaluate the relationship between flow dynamics and accumulation of crystals in stents. Here, we employed a full-scale architecture of the urinary system to computationally investigate the flow performance of a ureteric stent and experimentally determine the level of particle accumulation over the stent surface. Particular attention was given to side-holes, as they play a pivotal role in enhancing urinary drainage. Results demonstrated that there exists an inverse correlation between wall shear stress (WSS) and crystal accumulation at side-holes. Specifically, side-holes with greater WSS levels were those characterized by inter-compartmental fluid exchange between the stent and ureter. These "active" side-holes were located either nearby ureteric obstructions or at regions characterized by a physiological constriction of the ureter. Results also revealed that the majority of side-holes (>60%) suffer from low WSS levels and are, thus, prone to crystals accumulation. Moreover, side-holes located toward the proximal region of the ureter presented lower WSS levels compared to more distal ones, thus suffering from greater particle accumulation. Overall, findings corroborate the role of WSS in modulating the localization and extent of particle accumulation in ureteric stents.

3.
Membranes (Basel) ; 12(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35323808

ABSTRACT

Flux reduction induced by fouling is arguably the most adverse phenomenon in membrane-based separation systems. In this respect, many laboratory-scale filtration studies have shown that an appropriate use of hydrodynamic perturbations can improve both performance and durability of the membrane; however, to fully understand and hence appropriately exploit such effects, it is necessary to understand the underpinning flow processes. Towards this end, in this work we propose and validate a new module-scale laboratory facility with the aim of investigating, at very well-controlled flow conditions, how hydrodynamics affects mass transport phenomena at the feed/membrane interface. The proposed facility was designed to obtain a fully developed and uniform flow inside the test section and to impose both steady and pulsating flow conditions. The walls of the facility were made transparent to grant optical accessibility to the flow. In this paper, we discuss data coming from particle image velocimetry (PIV) measurements and preliminary ultrafiltration tests both under steady and pulsating flow conditions. PIV data indicate that the proposed facility allows for excellent flow control from a purely hydrodynamic standpoint. Results from filtration tests provide promising results pointing towards pulsating flows as a viable technique to reduce fouling in membrane systems.

4.
Phys Rev E ; 103(2-1): 023108, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33736035

ABSTRACT

Several studies have investigated the dynamics of a single spherical bubble at rest under a nonstationary pressure forcing. However, attention has almost always been focused on periodic pressure oscillations, neglecting the case of stochastic forcing. This fact is quite surprising, as random pressure fluctuations are widespread in many applications involving bubbles (e.g., hydrodynamic cavitation in turbulent flows or bubble dynamics in acoustic cavitation), and noise, in general, is known to induce a variety of counterintuitive phenomena in nonlinear dynamical systems such as bubble oscillators. To shed light on this unexplored topic, here we study bubble dynamics as described by the Keller-Miksis equation, under a pressure forcing described by a Gaussian colored noise modeled as an Ornstein-Uhlenbeck process. Results indicate that, depending on noise intensity, bubbles display two peculiar behaviors: when intensity is low, the fluctuating pressure forcing mainly excites the free oscillations of the bubble, and the bubble's radius undergoes small amplitude oscillations with a rather regular periodicity. Differently, high noise intensity induces chaotic bubble dynamics, whereby nonlinear effects are exacerbated and the bubble behaves as an amplifier of the external random forcing.

5.
J Endourol ; 32(7): 639-646, 2018 07.
Article in English | MEDLINE | ID: mdl-29699424

ABSTRACT

OBJECTIVE: To investigate the correlation between fluid dynamic processes and deposition of encrusting particles in ureteral stents. MATERIALS AND METHODS: Microfluidic models (referred to as "stent-on-chip" or SOC) were developed to replicate relevant hydrodynamic regions of a stented ureter, including drainage holes and the cavity formed by a ureteral obstruction. Computational fluid dynamic simulations were performed to determine the wall shear stress (WSS) field over the solid surfaces of the model, and the computational flow field was validated experimentally. Artificial urine was conveyed through the SOCs to measure the temporal evolution of encrustation through optical microscopy. RESULTS: It was revealed that drainage holes located well downstream of the obstruction had almost stagnant flow and low WSS (average 0.01 Pa, at 1 mL/min), and thus suffered from higher encrustation rates. On the contrary, higher levels of WSS in holes proximal to the obstruction (average ∼0.04 Pa, at 1 mL/min) resulted in lower encrustation rates in these regions. The cavity located nearby the obstruction was characterized by high levels of encrustation, because of the low WSS (average 1.6 × 10-4 Pa, at 1 mL/min) and the presence of flow vortices. Increasing the drainage flow rate from 1 to 10 mL/min resulted in significantly lower deposition of encrusting crystals. CONCLUSION: This study demonstrated an inverse correlation between deposition of encrusting bodies and the local WSS in a stented ureter model. Critical regions with low WSS and susceptible to encrustation were identified, including "inactive" side holes (i.e., with minimal or absent flow exchange between stent and ureter) and the cavity formed by a ureteral occlusion. Findings from this study can open new avenues for improving the stent's design through fluid dynamic optimization.


Subject(s)
Equipment Failure Analysis/methods , Stents , Ureter , Ureteral Obstruction/therapy , Equipment Failure , Humans , Hydrodynamics , Models, Biological
6.
Curr Urol Rep ; 19(5): 35, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29637309

ABSTRACT

PURPOSE OF REVIEW: There are three technological parameters that play a key role on the performance of an ideal stent. These are its material, design and surface coating. This article highlights some fundamental developments that took place in these three areas of stent's technology, in order to contribute to the identification of an ideal stent. RECENT FINDINGS: In addition to technological developments concerning stent's material, design and surface coating, the flow dynamic performance of stents has recently attracted increasing attention. Notably, it has been postulated that the local flow field in a stent is correlated with the deposition of crystals and microorganisms. These findings could potentially revolutionise future stent's designs, and complement developments made on materials and coatings. The most relevant changes in materials, designs and surface coatings of ureteric stents are reviewed in this article. These are described in the context of a specific cause of stent's failure they aim to address, with a particular focus on encrustation and biofilm formation.


Subject(s)
Equipment Design , Stents , Biofilms , Humans , Prosthesis Failure , Stents/adverse effects , Ureter
7.
Cent European J Urol ; 70(3): 270-274, 2017.
Article in English | MEDLINE | ID: mdl-29104790

ABSTRACT

INTRODUCTION: An ideal stent would offer simple insertion and removal with no discomfort and/or migration, it would have no biofilm formation or encrustation and would also maintain the patient's quality of life. MATERIAL AND METHODS: In this mini-review, we outlined the engineering developments related to stent material, design and coating. RESULTS: There have been a wide variety of in-vitro, model-based, animal-based and clinical studies using a range of commercial and non-commercial stents. Ureteric stents have evolved since their first usage with a wider range of stent design, material and coating available for laboratory and clinical use. CONCLUSIONS: While engineering innovations have led to the evolution of stents, more work needs to be done to address the issues relating to stent encrustation and biofilm formation.

8.
J Exp Biol ; 219(Pt 21): 3480-3491, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27591311

ABSTRACT

It is commonly assumed that stream-dwelling fish should select positions where they can reduce energetic costs relative to benefits gained and enhance fitness. However, the selection of appropriate hydrodynamic metrics that predict space use is the subject of recent debate and a cause of controversy. This is for three reasons: (1) flow characteristics are often oversimplified, (2) confounding variables are not always controlled and (3) there is limited understanding of the explanatory mechanisms that underpin the biophysical interactions between fish and their hydrodynamic environment. This study investigated the space use of brown trout, Salmo trutta, in a complex hydrodynamic flow field created using an array of different sized vertically oriented cylinders in a large open-channel flume in which confounding variables were controlled. A hydrodynamic drag function (D) based on single-point time-averaged velocity statistics that incorporates the influence of turbulent fluctuations was used to infer the energetic cost of steady swimming. Novel hydrodynamic preference curves were developed and used to assess the appropriateness of D as a descriptor of space use compared with other commonly used metrics. Zones in which performance-enhancing swimming behaviours (e.g. Kármán gaiting, entraining and bow riding) that enable fish to hold position while reducing energetic costs (termed 'specialised behaviours') were identified and occupancy was recorded. We demonstrate that energy conservation strategies play a key role in space use in an energetically taxing environment with the majority of trout groups choosing to frequently occupy areas in which specialised behaviours may be adopted or by selecting low-drag regions.


Subject(s)
Environment , Hydrodynamics , Rheology , Trout/physiology , Animals , Behavior, Animal/physiology
9.
Article in English | MEDLINE | ID: mdl-26465558

ABSTRACT

The compensated three-dimensional turbulent kinetic energy spectrum exhibits a peculiar bump at wave numbers in the vicinity of the crossover from inertial to viscous regimes due to pile up in turbulent kinetic energy, a phenomenon referred to as the bottleneck effect. The origin of this bump is linked to an inflection point in the second-order structure function in physical space caused by competition between vortex stretching and viscous diffusion mechanisms. The bump location and magnitude are reasonably predicted from a novel analytical solution to the Von Kármán-Howarth equation reflecting the competition between these two mechanisms and accounting for variable structure skewness with decreasing scale.

10.
Proc Biol Sci ; 282(1811)2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26136454

ABSTRACT

Anthropogenic structures (e.g. weirs and dams) fragment river networks and restrict the movement of migratory fish. Poor understanding of behavioural response to hydrodynamic cues at structures currently limits the development of effective barrier mitigation measures. This study aimed to assess the effect of flow constriction and associated flow patterns on eel behaviour during downstream migration. In a field experiment, we tracked the movements of 40 tagged adult European eels (Anguilla anguilla) through the forebay of a redundant hydropower intake under two manipulated hydrodynamic treatments. Interrogation of fish trajectories in relation to measured and modeled water velocities provided new insights into behaviour, fundamental for developing passage technologies for this endangered species. Eels rarely followed direct routes through the site. Initially, fish aligned with streamlines near the channel banks and approached the intake semi-passively. A switch to more energetically costly avoidance behaviours occurred on encountering constricted flow, prior to physical contact with structures. Under high water velocity gradients, fish then tended to escape rapidly back upstream, whereas exploratory 'search' behaviour was common when acceleration was low. This study highlights the importance of hydrodynamics in informing eel behaviour. This offers potential to develop behavioural guidance, improve fish passage solutions and enhance traditional physical screening.


Subject(s)
Anguilla/physiology , Animal Migration , Water Movements , Animals , Endangered Species , England , Rivers
11.
Article in English | MEDLINE | ID: mdl-25615188

ABSTRACT

Connections between the wall-normal turbulent velocity spectrum E(ww)(k) at wave number k and the mean velocity profile (MVP) are explored in pressure-driven flows confined within smooth walls at moderate to high bulk Reynolds numbers (Re). These connections are derived via a cospectral budget for the longitudinal (u') and wall-normal (w') velocity fluctuations, which include a production term due to mean shear interacting with E(ww)(k), viscous effects, and a decorrelation between u' and w' by pressure-strain effects [=π(k)]. The π(k) is modeled using a conventional Rotta-like return-to-isotropy closure but adjusted to include the effects of isotropization of the production term. The resulting cospectral budget yields a generalization of a previously proposed "spectral link" between the MVP and the spectrum of turbulence. The proposed cospectral budget is also shown to reproduce the measured MVP across the pipe with changing Re including the MVP shapes in the buffer and wake regions. Because of the links between E(ww)(k) and the MVP, the effects of intermittency corrections to inertial subrange scales and the so-called spectral bottleneck reported as k approaches viscous dissipation eddy sizes (η) on the MVP shapes are investigated and shown to be of minor importance. Inclusion of a local Reynolds number correction to a parameter associated with the spectral exponential cutoff as kη→1 appears to be more significant to the MVP shape in the buffer region. While the bulk shape of the MVP is reasonably reproduced in all regions of the pipe, the solution to the cospectral budget systematically underestimates the negative curvature of the MVP within the buffer layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...