Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 18(11): 117002, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24193949

ABSTRACT

High-throughput partial wave spectroscopy (HTPWS) is introduced as a high-speed spectral nanocytology technique that utilizes the field effect of carcinogenesis to perform minimally invasive cancer screening on at-risk populations. HTPWS uses fully automated hardware and an acousto-optic tunable filter to scan slides at low magnification, to select cells, and to rapidly acquire spectra at each spatial pixel in a cell between 450 and 700 nm, completing measurements of 30 cells in 40 min. Statistical quantitative analysis on the size and density of intracellular nanostructures extracted from the spectra at each pixel in a cell yields the diagnostic biomarker, disorder strength (Ld). Linear correlation between Ld and the length scale of nanostructures was measured in phantoms with R2=0.93. Diagnostic sensitivity was demonstrated by measuring significantly higher Ld from a human colon cancer cell line (HT29 control vector) than a less aggressive variant (epidermal growth factor receptor knockdown). Clinical diagnostic performance for lung cancer screening was tested on 23 patients, yielding a significant difference in Ld between smokers and cancer patients, p=0.02 and effect size=1.00. The high-throughput performance, nanoscale sensitivity, and diagnostic sensitivity make HTPWS a potentially clinically relevant modality for risk stratification of the large populations at risk of developing cancer.


Subject(s)
Cytological Techniques , Early Detection of Cancer , Nanomedicine/methods , Spectrum Analysis , Algorithms , Cytological Techniques/instrumentation , Cytological Techniques/methods , Early Detection of Cancer/instrumentation , Early Detection of Cancer/methods , HT29 Cells , Humans , Lung Neoplasms/chemistry , Lung Neoplasms/ultrastructure , Phantoms, Imaging , Sensitivity and Specificity , Spectrum Analysis/instrumentation , Spectrum Analysis/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...