Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Nature ; 630(8016): 329-334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38867129

ABSTRACT

Artificial Kitaev chains can be used to engineer Majorana bound states (MBSs) in superconductor-semiconductor hybrids1-4. In this work, we realize a two-site Kitaev chain in a two-dimensional electron gas by coupling two quantum dots through a region proximitized by a superconductor. We demonstrate systematic control over inter-dot couplings through in-plane rotations of the magnetic field and via electrostatic gating of the proximitized region. This allows us to tune the system to sweet spots in parameter space, where robust correlated zero-bias conductance peaks are observed in tunnelling spectroscopy. To study the extent of hybridization between localized MBSs, we probe the evolution of the energy spectrum with magnetic field and estimate the Majorana polarization, an important metric for Majorana-based qubits5,6. The implementation of a Kitaev chain on a scalable and flexible two-dimensional platform provides a realistic path towards more advanced experiments that require manipulation and readout of multiple MBSs.

2.
Nat Commun ; 15(1): 1676, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38395978

ABSTRACT

Optimal control of qubits requires the ability to adapt continuously to their ever-changing environment. We demonstrate a real-time control protocol for a two-electron singlet-triplet qubit with two fluctuating Hamiltonian parameters. Our approach leverages single-shot readout classification and dynamic waveform generation, allowing full Hamiltonian estimation to dynamically stabilize and optimize the qubit performance. Powered by a field-programmable gate array (FPGA), the quantum control electronics estimates the Overhauser field gradient between the two electrons in real time, enabling controlled Overhauser-driven spin rotations and thus bypassing the need for micromagnets or nuclear polarization protocols. It also estimates the exchange interaction between the two electrons and adjusts their detuning, resulting in extended coherence of Hadamard rotations when correcting for fluctuations of both qubit axes. Our study highlights the role of feedback in enhancing the performance and stability of quantum devices affected by quasistatic noise.

3.
Sci Adv ; 9(50): eadj3698, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38091387

ABSTRACT

A Josephson junction (JJ) is a key device for developing superconducting circuits, wherein a supercurrent in the JJ is controlled by the phase difference between the two superconducting electrodes. When two JJs sharing one superconducting electrode are coherently coupled and form the Andreev molecules, a supercurrent of one JJ is expected to be nonlocally controlled by the phase difference of another JJ. Here, we evaluate the supercurrent in one of the coupled two JJs as a function of local and nonlocal phase differences. Consequently, the results exhibit that the nonlocal phase control generates a finite supercurrent even when the local phase difference is zero. In addition, an offset of the local phase difference giving the JJ ground state depends on the nonlocal phase difference. These features demonstrate the anomalous Josephson effect realized by the nonlocal phase control. Our results provide a useful concept for engineering superconducting devices such as phase batteries and dissipationless rectifiers.

4.
Nat Commun ; 14(1): 8271, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38092786

ABSTRACT

The Josephson junction (JJ) is an essential element of superconducting (SC) devices for both fundamental and applied physics. The short-range coherent coupling of two adjacent JJs forms Andreev molecule states (AMSs), which provide a new ingredient to engineer exotic SC phenomena such as topological SC states and Andreev qubits. Here we provide tunneling spectroscopy measurements on a device consisting of two electrically controllable planar JJs sharing a single SC electrode. We discover that Andreev spectra in the coupled JJ are highly modulated from those in the single JJs and possess phase-dependent AMS features reproduced in our numerical calculation. Notably, the SC gap closing due to the AMS formation is experimentally observed. Our results help in understanding SC transport derived from the AMS and promoting the use of AMS physics to engineer topological SC states and quantum information devices.

5.
Phys Rev Lett ; 131(19): 196301, 2023 Nov 10.
Article in English | MEDLINE | ID: mdl-38000437

ABSTRACT

In analogy to conventional semiconductor diodes, the Josephson diode exhibits superconducting properties that are asymmetric in applied bias. The effect has been investigated in a number of systems recently, and requires a combination of broken time-reversal and inversion symmetries. We demonstrate a dual of the usual Josephson diode effect, a nonreciprocal response of Andreev bound states to a superconducting phase difference across the normal region of a superconductor-normal-superconductor Josephson junction, fabricated using an epitaxial InAs/Al heterostructure. Phase asymmetry of the subgap Andreev spectrum is absent in the absence of in-plane magnetic field and reaches a maximum at 0.15 T applied in the plane of the junction transverse to the current direction. We interpret the phase diode effect in this system as resulting from finite-momentum Cooper pairing due to orbital coupling to the in-plane magnetic field. At higher magnetic fields, we observe a sign reversal of the diode effect that appears together with a reopening of the spectral gap. Within our model, the sign reversal of the diode effect at higher fields is correlated with a topological phase transition that requires Zeeman and spin-orbit interactions in addition to orbital coupling.

8.
Nat Commun ; 14(1): 4876, 2023 Aug 12.
Article in English | MEDLINE | ID: mdl-37573341

ABSTRACT

Cooper pairs occupy the ground state of superconductors and are typically composed of maximally entangled electrons with opposite spin. In order to study the spin and entanglement properties of these electrons, one must separate them spatially via a process known as Cooper pair splitting (CPS). Here we provide the first demonstration of CPS in a semiconductor two-dimensional electron gas (2DEG). By coupling two quantum dots to a superconductor-semiconductor hybrid region we achieve efficient Cooper pair splitting, and clearly distinguish it from other local and non-local processes. When the spin degeneracy of the dots is lifted, they can be operated as spin-filters to obtain information about the spin of the electrons forming the Cooper pair. Not only do we observe a near perfect splitting of Cooper pairs into opposite-spin electrons (i.e. conventional singlet pairing), but also into equal-spin electrons, thus achieving triplet correlations between the quantum dots. Importantly, the exceptionally large spin-orbit interaction in our 2DEGs results in a strong triplet component, comparable in amplitude to the singlet pairing. The demonstration of CPS in a scalable and flexible platform provides a credible route to study on-chip entanglement and topological superconductivity in the form of artificial Kitaev chains.

9.
Phys Rev Lett ; 130(11): 116203, 2023 Mar 17.
Article in English | MEDLINE | ID: mdl-37001098

ABSTRACT

Andreev bound states with opposite phase-inversion asymmetries are observed in local tunneling spectra at the two ends of a superconductor-semiconductor-superconductor planar Josephson junction in the presence of a perpendicular magnetic field, while the nonlocal spectra remain phase symmetric. Spectral signatures agree with a theoretical model, yielding a physical picture in which phase textures in superconducting leads localize and control the position of Andreev bound states in the junction, demonstrating a simple means of controlling the position and size of Andreev states within a planar junction.

10.
Phys Rev Lett ; 129(22): 227702, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36493429

ABSTRACT

The spin 1/2 entropy of electrons trapped in a quantum dot has previously been measured with great accuracy, but the protocol used for that measurement is valid only within a restrictive set of conditions. Here, we demonstrate a novel entropy measurement protocol that is universal for arbitrary mesoscopic circuits and apply this new approach to measure the entropy of a quantum dot hybridized with a reservoir. The experimental results match closely to numerical renormalization group (NRG) calculations for small and intermediate coupling. For the largest couplings investigated in this Letter, NRG calculations predict a suppression of spin entropy at the charge transition due to the formation of a Kondo singlet, but that suppression is not observed in the experiment.


Subject(s)
Quantum Dots , Cytoskeleton , Electrons , Entropy
11.
Nano Lett ; 22(21): 8601-8607, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36279222

ABSTRACT

Tunneling spectroscopy measurements are often used to probe the energy spectrum of Andreev bound states (ABSs) in semiconductor-superconductor hybrids. Recently, this spectroscopy technique has been incorporated into planar Josephson junctions (JJs) formed in two-dimensional electron gases, a potential platform to engineer phase-controlled topological superconductivity. Here, we perform ABS spectroscopy at the two ends of planar JJs and study the effects of the magnetic vector potential on the ABS spectrum. We show that the local superconducting phase difference arising from the vector potential is equal in magnitude and opposite in sign at the two ends, in agreement with a model that assumes localized ABSs near the tunnel barriers. Complemented with microscopic simulations, our experiments demonstrate that the local phase difference can be used to estimate the relative position of localized ABSs separated by a few hundred nanometers.

12.
Entropy (Basel) ; 24(3)2022 Mar 17.
Article in English | MEDLINE | ID: mdl-35327927

ABSTRACT

Previous measurements utilizing Maxwell relations to measure change in entropy, S, demonstrated remarkable accuracy in measuring the spin-1/2 entropy of electrons in a weakly coupled quantum dot. However, these previous measurements relied upon prior knowledge of the charge transition lineshape. This had the benefit of making the quantitative determination of entropy independent of scale factors in the measurement itself but at the cost of limiting the applicability of the approach to simple systems. To measure the entropy of more exotic mesoscopic systems, a more flexible analysis technique may be employed; however, doing so requires a precise calibration of the measurement. Here, we give details on the necessary improvements made to the original experimental approach and highlight some of the common challenges (along with strategies to overcome them) that other groups may face when attempting this type of measurement.

13.
Phys Rev Lett ; 128(1): 017401, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35061454

ABSTRACT

Impacts of domain textures on low-lying neutral excitations in the bulk of fractional quantum Hall effect (FQHE) systems are probed by resonant inelastic light scattering. We demonstrate that large domains of quantum fluids support long-wavelength neutral collective excitations with well-defined wave vector (momentum) dispersion that could be interpreted by theories for uniform phases. Access to dispersive low-lying neutral collective modes in large domains of FQHE fluids such as long wavelength magnetorotons at filling factor v=1/3 offer significant experimental access to strong electron correlation physics in the FQHE.

14.
Nat Nanotechnol ; 17(1): 39-44, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34795437

ABSTRACT

Transport is non-reciprocal when not only the sign, but also the absolute value of the current depends on the polarity of the applied voltage. It requires simultaneously broken inversion and time-reversal symmetries, for example, by an interplay of spin-orbit coupling and magnetic field. Hitherto, observation of nonreciprocity was tied to resistivity, and dissipationless non-reciprocal circuit elements were elusive. Here we engineer fully superconducting non-reciprocal devices based on highly transparent Josephson junctions fabricated on InAs quantum wells. We demonstrate supercurrent rectification far below the transition temperature. By measuring Josephson inductance, we can link the non-reciprocal supercurrent to an asymmetry of the current-phase relation, and directly derive the supercurrent magnetochiral anisotropy coefficient. A semiquantitative model explains well the main features of our experimental data. Non-reciprocal Josephson junctions have the potential to become for superconducting circuits what pn junctions are for traditional electronics, enabling new non-dissipative circuit elements.

15.
Nano Lett ; 21(23): 9990-9996, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34793173

ABSTRACT

Topological superconductivity can be engineered in semiconductors with strong spin-orbit interaction coupled to a superconductor. Experimental advances in this field have often been triggered by the development of new hybrid material systems. Among these, two-dimensional electron gases (2DEGs) are of particular interest due to their inherent design flexibility and scalability. Here, we discuss results on a 2D platform based on a ternary 2DEG (InSbAs) coupled to in situ grown aluminum. The spin-orbit coupling in these 2DEGs can be tuned with the As concentration, reaching values up to 400 meV Å, thus exceeding typical values measured in its binary constituents. In addition to a large Landé g-factor of ∼55 (comparable to that of InSb), we show that the clean superconductor-semiconductor interface leads to a hard induced superconducting gap. Using this new platform, we demonstrate the basic operation of phase-controllable Josephson junctions, superconducting islands, and quasi-1D systems, prototypical device geometries used to study Majorana zero modes.

16.
Nat Commun ; 12(1): 2142, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33837187

ABSTRACT

The transfer of information between quantum systems is essential for quantum communication and computation. In quantum computers, high connectivity between qubits can improve the efficiency of algorithms, assist in error correction, and enable high-fidelity readout. However, as with all quantum gates, operations to transfer information between qubits can suffer from errors associated with spurious interactions and disorder between qubits, among other things. Here, we harness interactions and disorder between qubits to improve a swap operation for spin eigenstates in semiconductor gate-defined quantum-dot spins. We use a system of four electron spins, which we configure as two exchange-coupled singlet-triplet qubits. Our approach, which relies on the physics underlying discrete time crystals, enhances the quality factor of spin-eigenstate swaps by up to an order of magnitude. Our results show how interactions and disorder in multi-qubit systems can stabilize non-trivial quantum operations and suggest potential uses for non-equilibrium quantum phenomena, like time crystals, in quantum information processing applications. Our results also confirm the long-predicted emergence of effective Ising interactions between exchange-coupled singlet-triplet qubits.

17.
Nat Commun ; 12(1): 2156, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33846333

ABSTRACT

Semiconductor quantum-dot spin qubits are a promising platform for quantum computation, because they are scalable and possess long coherence times. In order to realize this full potential, however, high-fidelity information transfer mechanisms are required for quantum error correction and efficient algorithms. Here, we present evidence of adiabatic quantum-state transfer in a chain of semiconductor quantum-dot electron spins. By adiabatically modifying exchange couplings, we transfer single- and two-spin states between distant electrons in less than 127 ns. We also show that this method can be cascaded for spin-state transfer in long spin chains. Based on simulations, we estimate that the probability to correctly transfer single-spin eigenstates and two-spin singlet states can exceed 0.95 for the experimental parameters studied here. In the future, state and process tomography will be required to verify the transfer of arbitrary single qubit states with a fidelity exceeding the classical bound. Adiabatic quantum-state transfer is robust to noise and pulse-timing errors. This method will be useful for initialization, state distribution, and readout in large spin-qubit arrays for gate-based quantum computing. It also opens up the possibility of universal adiabatic quantum computing in semiconductor quantum-dot spin qubits.

18.
Phys Rev Lett ; 126(10): 106402, 2021 Mar 12.
Article in English | MEDLINE | ID: mdl-33784167

ABSTRACT

Flat bands near M points in the Brillouin zone are key features of honeycomb symmetry in artificial graphene (AG) where electrons may condense into novel correlated phases. Here we report the observation of van Hove singularity doublet of AG in GaAs quantum well transistors, which presents the evidence of flat bands in semiconductor AG. Two emerging peaks in photoluminescence spectra tuned by backgate voltages probe the singularity doublet of AG flat bands and demonstrate their accessibility to the Fermi level. As the Fermi level crosses the doublet, the spectra display dramatic stability against electron density, indicating interplays between electron-electron interactions and honeycomb symmetry. Our results provide a new flexible platform to explore intriguing flat band physics.

19.
Adv Sci (Weinh) ; 8(4): 2003087, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33643798

ABSTRACT

The design of epitaxial semiconductor-superconductor and semiconductor-metal quantum devices requires a detailed understanding of the interfacial electronic band structure. However, the band alignment of buried interfaces is difficult to predict theoretically and to measure experimentally. This work presents a procedure that allows to reliably determine critical parameters for engineering quantum devices; band offset, band bending profile, and number of occupied quantum well subbands of interfacial accumulation layers at semiconductor-metal interfaces. Soft X-ray angle-resolved photoemission is used to directly measure the quantum well states as well as valence bands and core levels for the InAs(100)/Al interface, an important platform for Majorana-zero-mode based topological qubits, and demonstrate that the fabrication process strongly influences the band offset, which in turn controls the topological phase diagrams. Since the method is transferable to other narrow gap semiconductors, it can be used more generally for engineering semiconductor-metal and semiconductor-superconductor interfaces in gate-tunable superconducting devices.

20.
Phys Rev Lett ; 126(3): 037001, 2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33543978

ABSTRACT

We present simultaneous measurements of Josephson inductance and dc transport characteristics of ballistic Josephson junctions based upon an epitaxial Al-InAs heterostructure. The Josephson inductance at finite current bias directly reveals the current-phase relation. The proximity-induced gap, the critical current and the average value of the transparency τ[over ¯] are extracted without need for phase bias, demonstrating, e.g., a near-unity value of τ[over ¯]=0.94. Our method allows us to probe the devices deeply in the nondissipative regime, where ordinary transport measurements are featureless. In perpendicular magnetic field the junctions show a nearly perfect Fraunhofer pattern of the critical current, which is insensitive to the value of τ[over ¯]. In contrast, the signature of supercurrent interference in the inductance turns out to be extremely sensitive to τ[over ¯].

SELECTION OF CITATIONS
SEARCH DETAIL
...