Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Precis Oncol ; 8(1): 29, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448512

ABSTRACT

ALK and ROS1 fusions are effectively targeted by tyrosine kinase inhibitors (TKIs), however patients inevitably relapse after an initial response, often due to kinase domain mutations. We investigated circulating DNA from TKI-relapsed NSCLC patients by deep-sequencing. New EML4::ALK substitutions, L1198R, C1237Y and L1196P, were identified in the plasma of NSCLC ALK patients and characterized in a Ba/F3 cell model. Variants C1237Y and L1196P demonstrated pan-inhibitor resistance across 5 clinical and 2 investigational TKIs.

3.
Cancers (Basel) ; 13(20)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34680298

ABSTRACT

Cancer cells are characterized by high genetic instability, that favors tumor relapse. The identification of the genetic causes of relapse can direct next-line therapeutic choices. As tumor tissue rebiopsy at disease progression is not always feasible, noninvasive alternative methods are being explored. Liquid biopsy is emerging as a non-invasive, easy and repeatable tool to identify specific molecular alterations and monitor disease response during treatment. The dynamic follow-up provided by this analysis can provide useful predictive information and allow prompt therapeutic actions, tailored to the genetic profile of the recurring disease, several months before radiographic relapse. Oncogenic fusion genes are particularly suited for this type of analysis. Anaplastic Lymphoma Kinase (ALK) is the dominant driver oncogene in several tumors, including Anaplastic Large-Cell Lymphoma (ALCL), Non-Small Cell Lung Cancer (NSCLC) and others. Here we review recent findings in liquid biopsy technologies, including ctDNA, CTCs, exosomes, and other markers that can be investigated from plasma samples, in ALK-positive cancers.

4.
Cancers (Basel) ; 13(17)2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34503232

ABSTRACT

Anaplastic lymphoma kinase-positive (ALK+) anaplastic large-cell lymphoma (ALCL) is a subtype of non-Hodgkin lymphoma characterized by expression of the oncogenic NPM/ALK fusion protein. When resistant or relapsed to front-line chemotherapy, ALK+ ALCL prognosis is very poor. In these patients, the ALK inhibitor crizotinib achieves high response rates, however 30-40% of them develop further resistance to crizotinib monotherapy, indicating that new therapeutic approaches are needed in this population. We here investigated the efficacy of upfront rational drug combinations to prevent the rise of resistant ALCL, in vitro and in vivo. Different combinations of crizotinib with CHOP chemotherapy, decitabine and trametinib, or with second-generation ALK inhibitors, were investigated. We found that in most cases combined treatments completely suppressed the emergence of resistant cells and were more effective than single drugs in the long-term control of lymphoma cells expansion, by inducing deeper inhibition of oncogenic signaling and higher rates of apoptosis. Combinations showed strong synergism in different ALK-dependent cell lines and better tumor growth inhibition in mice. We propose that drug combinations that include an ALK inhibitor should be considered for first-line treatments in ALK+ ALCL.

SELECTION OF CITATIONS
SEARCH DETAIL
...