Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicology ; 32(1): 73-81, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36626014

ABSTRACT

Urban areas next to mangroves are subject to progressive heavy metal contamination. Treelets of Inga laurina were collected in this ecosystem and cultivated for 30 days in waterlogged conditions and closed pots (WC) and at field capacity (FC), while exposed to different Cd concentrations (0, 50 and 100 mg·kg-1). Soil water conditions did not affect total Cd in plants, with Cd accumulating in roots and WC inducing less leaf chlorophyll while increasing carotenoids and chlorophyll ratio. Higher net photosynthesis, stomatal conductance, transpiration, and Ci/Ca ratio were observed under the highest Cd concentration and WC, while being conservative in water consumption as shown by the reduction in both water use efficiencies. Nutritional uptake behaved differently for each element, with N, Mg and Ca not being affected by Cd under WC but K increasing with Cd. At FC, plants showed higher values than WC, with the highest Cd concentration at FC showing the highest values overall. Nutrient allocation in organs was affected by WC in N, Mg, K, P and Ca but only P by Cd, with WC reducing nutrients overall and N, Mg and Ca behaving the same in both soil conditions while K was lowered in leaves and increased in roots under WC. P allocation under WC was not hindered by Cd even showing higher values in it than FC in some treatments. Altogether, results indicate that I. laurina can be considered a Cd-tolerant species, especially in WC and it presents a potential to be used as a phytoremediator plant.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/toxicity , Soil , Ecosystem , Photosynthesis , Chlorophyll , Plant Leaves , Plant Roots , Soil Pollutants/toxicity , Water
2.
Mar Pollut Bull ; 131(Pt A): 122-129, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29886928

ABSTRACT

Mangroves have been subject to more metal contamination, including cadmium (Cd). This study evaluated if a relatively short Cd exposure may induce metabolic, morphological and ultrastructural cell disturbance in Avicennia schaueriana. Cd induced evident constraints to seedlings since there was reduction in leaf gas exchanges and the plants did not survive for more than 10 days at a higher Cd exposure in controlled conditions. The highest Cd accumulation was observed in roots and gradually less in stem and leaves. Cadmium induced lignin deposition was observed in xylem cells of all vegetative organs. Intense sclerification in xylem cells, endoderm and change in the hypoderm organization were also detected. Cadmium clearly induced chloroplast deformities with ruptures of its membranes, thylakoids and core and provoked cytoplasm disorganization. These metal constraints under natural conditions for long term can lead to the accumulation of cellular and metabolic damages and jeopardize seedlings establishment and local biodiversity.


Subject(s)
Avicennia/drug effects , Cadmium/toxicity , Ecotoxicology/methods , Avicennia/metabolism , Avicennia/ultrastructure , Cadmium/pharmacokinetics , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Roots/chemistry , Plant Stems/drug effects , Seedlings/drug effects , Wetlands
3.
Ecotoxicol Environ Saf ; 159: 272-283, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29753828

ABSTRACT

The objective of this study was to evaluate Cr toxicity in young plants of the CCN 51 Theobroma cacao genotype at different concentrations of Cr3+ in the soil (0, 100, 200, 400 and 600 mg kg-1) through physiological, ultrastructural, antioxidant and molecular changes. Doses of 400 and 600 mg Cr3+ kg-1 soil severely affected foliar gas exchange, promoted by damages in photosynthetic machinery evidenced by the decrease in CO2 fixation. Decreased expression of psbA and psbO genes, changes in enzymatic activity and lipid peroxidation also affected leaf gas exchange. A hormesis effect was observed at 100 mg Cr3+ kg-1 soil for the photosynthetic activity. As a metal exclusion response, the roots of the cocoa plants immobilized, on average, 75% of the total Cr absorbed. Ultrastructural changes in leaf mesophyll and roots, with destruction of mitochondria, plasmolysis and formation of vesicles, were related to the oxidative stress promoted by excess ROS. The activity of the antioxidant enzymes SOD, APX, GPX and CAT and the amino acid proline coincided with the greater expression of the sod cyt gene demonstrating synchronicity in the elimination of ROS. It was concluded, therefore, that the tolerance of the cocoa plants to the toxicity of Cr3+ depends on the concentration and time of exposure to the metal. Higher doses of Cr3+ in the soil promoted irreversible damage to the photosynthetic machinery and the cellular ultrastructure, interfering in the enzymatic and non-enzymatic systems related to oxidative stress and gene expression. However, the low mobility of the metal to the leaf is presented as a strategy of tolerance to Cr3+.


Subject(s)
Cacao/drug effects , Chromium/toxicity , Soil Pollutants/toxicity , Antioxidants/metabolism , Cacao/genetics , Cacao/physiology , Cacao/ultrastructure , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/physiology , Plant Leaves/ultrastructure , Plant Roots/drug effects , Plant Roots/metabolism , Plant Roots/ultrastructure
4.
Ecotoxicol Environ Saf ; 144: 148-157, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28614756

ABSTRACT

Cadmium (Cd) is a highly toxic metal for plants, even at low concentrations in the soil. The annual production of world cocoa beans is approximately 4 million tons. Most of these fermented and dried beans are used in the manufacture of chocolate. Recent work has shown that the concentration of Cd in these beans has exceeded the critical level (0.6mgkg-1 DM). The objective of this study was to evaluate the toxicity of Cd in young plants of CCN 51 cacao genotype grown in soil with different concentrations of Cd (0, 0.05 and 0.1gkg-1 soil) through photosynthetic, antioxidative, molecular and ultrastructural changes. The increase of Cd concentration in the soil altered mineral nutrient absorption by competition or synergism, changed photosynthetic activity caused by reduction in chloroplastidic pigment content and damage to the photosynthetic machinery evidenced by the Fv/Fm ratio and expression of the psbA gene and increased GPX activity in the root and SOD in leaves. Additionally, ultrastructural alterations in roots and leaves were also evidenced with the increase of the concentration of Cd in the soil, whose toxicity caused rupture of biomembranes in root and leaf cells, reduction of the number of starch grains in foliar cells, increase of plastoglobules in chloroplasts and presence of multivesiculated bodies in root cells. It was concluded, therefore, that soil Cd toxicity caused damage to the photosynthetic machinery, antioxidative metabolism, gene expression and irreversible damage to root cells ultrastructure of CCN 51 cocoa plants, whose damage intensity depended on the exposure time to the metal.


Subject(s)
Antioxidants/metabolism , Cacao/drug effects , Cadmium/toxicity , Photosynthesis/drug effects , Soil Pollutants/toxicity , Soil/chemistry , Cacao/metabolism , Cacao/ultrastructure , Dose-Response Relationship, Drug , Gene Expression/drug effects
5.
Int J Phytoremediation ; 19(7): 621-631, 2017 Jul 03.
Article in English | MEDLINE | ID: mdl-28084783

ABSTRACT

Erythrina fusca is an important legume used for shade cover in cacao plantations in Brazil. Cacao plantations receive large quantities of copper (Cu)-containing agrochemicals, mainly for control of diseases. Therefore, Cu toxicity was investigated in seedlings grown in hydroponics with increasing concentrations of Cu (0.005-32 mg L-1) in a greenhouse. Ultrastructural analyses showed cell plasmolysis in the root cortical area and changes in thylakoid membranes at 8 mg Cu L-1 and higher. There were changes in epicuticular wax deposition on the leaf surface at the 16 and 32 mg Cu L-1 treatments. Leaf gas exchanges were highly affected 24 hours after application of treatments beginning at 8 mg Cu L-1 and higher Cu concentrations. Chemical analyses showed that Cu content in E. fusca roots increased as Cu concentration in the nutrient solution increased, whereas the shoot did not show significant changes. It is also observed that excess Cu interfered with Zn, Fe, Mn, Mg, K, P, and Ca content in the different E. fusca organs. Investigation of Cu toxicity symptoms focusing on morphophysiological, ultrastructural, gas exchange, and nutritional changes would be useful to alleviate Cu toxicity in E. fusca under field conditions, an important agroforestry species in cacao plantation.


Subject(s)
Copper/toxicity , Environmental Pollutants/toxicity , Erythrina , Biodegradation, Environmental , Brazil , Erythrina/growth & development , Erythrina/physiology , Plant Roots , Seedlings
6.
Ecotoxicol Environ Saf ; 115: 174-86, 2015 May.
Article in English | MEDLINE | ID: mdl-25700096

ABSTRACT

Seeds from Theobroma cacao progenies derived from the self-pollination of 'Catongo'×'Catongo' and the crossing between CCN-10×SCA-6 were immersed for 24h in different Cd solutions (2; 4; 8; 16 and 32 mgL(-1)) along with the control treatment (without Cd). Shortly after, the seeds were sown in plastic tubes containing organic substrate and were grown in a greenhouse for 60 days. The treatment with Cd was observed to cause morphological, biochemical, molecular and ultrastructural changes in both progenies of T. cacao. There has been deformation in chloroplasts, nuclear chromatin condensation, and reduction in thickness of the mesophyll. As for 'Catongo'×'Catongo', a decrease in thickness of the epidermis was noted on the abaxial face. There has been increased guaiacol peroxidase activity in the roots of CCN-10×SCA-6, as well as in the''Catongo'×'Catongo' leaves. In the presence of Cd, CCN-10×SCA-6 showed increased expression of the genes associated with the biosynthesis of phytochelatin (PCS-1) and class III peroxidases (PER-1) in leaves, and metallothionein (MT2b), in roots. In 'Catongo'×'Catongo', there has been an increase in the expression of genes associated with the biosynthesis of PER-1 and cytosolic superoxide dismutase dependent on copper and zinc (Cu-Zn SODCyt) in leaves and from MT2b and PCS-1 and roots. There was higher accumulation of Cd in the aerial parts of seedlings from both progenies, whereas the most pronounced accumulation was seen in''Catongo'×'Catongo'. The increase in Cd concentration has led to lower Zn and Fe levels in both progenies. Hence, one may conclude that the different survival strategies used by CCN-10×SCA-6 made such progeny more tolerant to Cd stress when compared to''Catongo'×'Catongo'.


Subject(s)
Cacao/drug effects , Cadmium/toxicity , Cacao/genetics , Cacao/metabolism , Cacao/ultrastructure , Cadmium/analysis , Chloroplasts/drug effects , Copper/metabolism , Peroxidases/metabolism , Phytochelatins/biosynthesis , Plant Leaves/drug effects , Plant Leaves/metabolism , Plant Leaves/ultrastructure , Plant Roots/drug effects , Plant Roots/metabolism , Seedlings/drug effects , Seedlings/metabolism , Seedlings/ultrastructure , Superoxide Dismutase/metabolism , Zinc/metabolism
7.
Environ Sci Pollut Res Int ; 21(2): 1217-30, 2014 Jan.
Article in English | MEDLINE | ID: mdl-23888348

ABSTRACT

Seedlings of Theobroma cacao CCN 51 genotype were grown under greenhouse conditions and exposed to increasing concentrations of Cu (0.005, 1, 2, 4, 8, 16, and 32 mg Cu L(-1)) in nutrient solution. When doses were equal or higher than 8 mg Cu L(-1), after 24 h of treatment application, leaf gas exchange was highly affected and changes in chloroplasts thylakoids of leaf mesophyll cells and plasmolysis of cells from the root cortical region were observed. In addition, cell membranes of roots and leaves were damaged. In leaves, 96 h after treatments started, increases in the percentage of electrolyte leakage through membranes were observed with increases of Cu in the nutrient solution. Moreover, there was an increase in the concentration of thiobarbituric acid-reactive substances in roots due to lipid peroxidation of membranes. Chemical analysis showed that increases in Cu concentrations in vegetative organs of T. cacao increased with the increase of the metal in the nutrient solution, but there was a greater accumulation of Cu in roots than in shoots. The excess of Cu interfered in the levels of Mn, Zn, Fe, Mg, K, and Ca in different organs of T. cacao. Analysis of gene expression via RTq-PCR showed increased levels of MT2b, SODCyt, and PER-1 expression in roots and of MT2b, PSBA, PSBO, SODCyt, and SODChI in leaves. Hence, it was concluded that Cu in nutrient solution at doses equal or above 8 mg L(-1) significantly affected leaf gas exchange, cell ultrastructure, and transport of mineral nutrients in seedlings of this T. cacao genotype.


Subject(s)
Cacao/physiology , Copper/toxicity , Gene Expression/drug effects , Seedlings/genetics , Soil Pollutants/toxicity , Cacao/cytology , Cacao/genetics , Seedlings/cytology , Seedlings/metabolism , Stress, Physiological
8.
Biometals ; 24(1): 59-71, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20838856

ABSTRACT

Cadmium (Cd) originating from atmospheric deposits, from industrial residues and from the application of phosphate fertilizers may accumulate in high concentrations in soil, water and food, thus becoming highly toxic to plants, animals and human beings. Once accumulated in an organism, Cd discharges and sets off a sequence of biochemical reactions and morphophysiological changes which may cause cell death in several tissues and organs. In order to test the hypothesis that Cd interferes in the metabolism of G. americana, a greenhouse experiment was conducted to measure eventual morphophysiological responses and cell death induced by Cd in this species. The plants were exposed to Cd concentrations ranging from 0 to 16 mg l(-1), in a nutritive solution. In TUNEL reaction, it was shown that Cd caused morphological changes in the cell nucleus of root tip and leaf tissues, which are typical for apoptosis. Cadmium induced anatomical changes in roots and leaves, such as the lignification of cell walls in root tissues and leaf main vein. In addition, the leaf mesophyll showed increase of the intercellular spaces. On the other hand, Cd caused reductions in the net photosynthetic rate, stomatal conductance and leaf transpiration, while the maximum potential quantum efficiency of PS2 (Fv/Fm) was unchanged. Cadmium accumulated in the root system in high concentrations, with low translocation for the shoot, and promoted an increase of Ca and Zn levels in the roots and a decrease of K level in the leaves. High concentrations of Cd promoted morphophysiological changes and caused cell death in roots and leaves tissues of G. americana.


Subject(s)
Cadmium/pharmacology , Plant Leaves/drug effects , Plant Roots/drug effects , Rubiaceae/drug effects , Cell Death/drug effects , Dose-Response Relationship, Drug , Plant Leaves/cytology , Plant Leaves/metabolism , Plant Roots/cytology , Plant Roots/metabolism , Quantum Theory , Rubiaceae/cytology , Rubiaceae/metabolism
9.
Cell Mol Biol (Noisy-le-grand) ; 48(5): 537-45, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12146710

ABSTRACT

In order to understand the mechanisms of intestinal injuries due to ionizing radiation, various groups of rats have been whole-body irradiated by gamma-rays at two dose rates (1 Gy/min and 1 Gy/hr), three doses (1, 2 and 4 Gy) and two post-irradiation times (24 and 48 hr). Duodenum samples of the animals were prepared for light microscopy, according to classical methods for histology and TUNEL reaction. A small number of morphological differences were observed within the mucosa between the two dose rates used. The extent and the number of lesions were more important at the slower dose rate (1 Gy/hr) and increased with the total dose. Clear cavities were seen inside the lamina propria which appeared like capillaries free of blood cells. The mitotic index calculated from crypt cells showed a regular decrease with the dose, which was exacerbated at 48 hr post-irradiation. On the other hand, the apoptotic index increased with the dose and the postirradiation time. Our results lead to hypothesize another mechanism of intestinal mucosa renewal allowing to explain mucosa denudations observed after radiotherapy. Thus we propose a new concept in which the duodenal mucosa renewal may occur by whole villi shedding into the duodenal lumen.


Subject(s)
Gastric Mucosa/radiation effects , Whole-Body Irradiation/adverse effects , Animals , Apoptosis/radiation effects , Dose-Response Relationship, Radiation , Duodenum/pathology , Duodenum/radiation effects , Gamma Rays , Gastric Mucosa/pathology , Male , Mitosis/radiation effects , Mitotic Index , Rats , Rats, Wistar , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...