Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biotechnol Prog ; 40(2): e3409, 2024.
Article in English | MEDLINE | ID: mdl-37985144

ABSTRACT

Depth filtration significantly impacts efficiency of lentiviral (LV) vector purification process. However, it is often deprioritized in the overall scope of viral vector manufacturing process optimization. The demand for LV vectors has increased with the rise in disease indications, making it crucial to improve current manufacturing processes. Upstream bioreactor process intensification has enabled cell densities of over 107 viable cells/mL, creating challenges for harvest unit operations. The larger size of LV vectors and their physiochemical similarity to host cell-DNA (HC-DNA) and poor clarification performance causes significant challenges for the subsequent chromatography-based purifications. As a result, a robust and scalable harvest of LV process is needed, especially for LV in vivo therapeutic quality needs. In this study, we systematically evaluated the overlooked yet important issue of depth filtration systems to improve enveloped LV functional vector recovery. We found that an established depth filtration system in process A that provided 94% (n = 6) LV functional recovery could not be translated to intensified Process B cell culture. Hence, the depth filtration process became a bottleneck for the purification performance in an intensified process. We demonstrated an improvement in LV functional vector recovery from 34% to 82% via filter train optimization for an intensified suspension cell culture system (>107 cells/mL with higher titer), while still maintaining a loading throughput of ≥82 L/m2 and turbidity ≤20 NTU. It was demonstrated that the two or three-stage depth filtration scheme is scalable and more suitable for high cell density culture for large scale for LV manufacturing process.


Subject(s)
Filtration , Lentivirus , Lentivirus/genetics , Bioreactors , Genetic Vectors , Cell Culture Techniques , DNA
2.
Biopolymers ; 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-28948603

ABSTRACT

A scalable, viable process was developed for the Fibroblast Growth Factor 21 (FGF21) protein-antibody conjugate, CVX-343, an extended half-life therapeutic for the treatment of metabolic disease. CVX-343 utilizes the CovX antibody scaffold technology platform that was specifically developed for peptide and protein half-life extension. CVX-343 is representative of a growing number of complex novel peptide- and protein-based bioconjugate molecules currently being explored as therapeutic candidates. The complexity of these bioconjugates, assembled using well-established chemistries, can lead to very difficult production schemes requiring multiple starting materials and a combination of diverse technologies. Key improvements had to be made to the original CVX-343 Phase 1 manufacturing process in preparation for Phase 3 and commercial manufacturing. A strategy of minimizing FGF21A129C dimerization and stabilizing the FGF21A129C Drug Substance Intermediate (DSI), linker, and activated FGF21 intermediate was pursued. The use of tris(2-carboxyethyl)phosphine (TCEP) to prevent FGF21A129C dimerization through disulfide formation was eliminated. FGF21A129C dimerization and linker hydrolysis were minimized by formulating and activating FGF21A129C at acidic instead of neutral pH. An activation use test was utilized to guide FGF21A129C pooling in order to minimize misfolds, dimers, and misfolded dimers in the FGF21A129C DSI. After final optimization of reaction conditions, a process was established that reduced the consumption of FGF21A129C by 36% (from 4.7 to 3.0 equivalents) and the consumption of linker by 55% (from 1.4 to 0.95 equivalents for a smaller required amount of FGF21A129C ). The overall process time was reduced from ∼5 to ∼3 days. The product distribution improved from containing ∼60% to ∼75% desired bifunctionalized (+2 FGF21) FGF21-antibody conjugate in the crude conjugation mixture and from ∼80% to ∼85% in the final CVX-343 Drug Substance (DS), while maintaining the same overall process yield based on antibody scaffold input.

3.
J Chromatogr A ; 1408: 261-6, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26195039

ABSTRACT

This paper describes the use of an anionic ion-pair reagent (IPR) to impove the ultraviolet (UV) detection and hydrophobic retention of polar and UV transparent cations. Anionic IPR added to the mobile phase forms an ion-pair with cations. Formation of the ion-pair causes a redshift in the absorption wavength, making it possible for direct UV detection of UV-inactive cations. The ion-pairs with increased hydrophobicity were separated by reversed phase liquid chromatography (RPLC). Different perfluorinated caboxylic acids (trifluoroacetic acid, heptafluorobutyric acid, nonafluoropentanoic acid) were evaluted as IPR in the separation and detection of the common cations sodium, ammonium and Tris(hydroxymethyl)aminomethane (Tris). The effects of the IPR type and concentration on separation and detection have been investigated to understand the separation and detection mechanisms. The optimal separation and detection condtions were attained with mobile phase containing 0.1% nonafluoropentanoic acid and with the UV detection at 210nm. UV detection and charged aerosol detection (CAD) were compared in the quantitation of the cations. The limit of quantitation (LOQ) of sodium and Tris with UV detection is comparable to that by CAD. The LOQ of ammonium with UV detection (1ppm or 3ng) is about 20-fold lower than that (20ppm or 60ng) by CAD. The RPLC-UV method was used to monitor ammonium clearance during ultrafiltration and diafiltration in the manfucaturing of biopharmceutical drug substance.


Subject(s)
Chromatography, Reverse-Phase/methods , Anions , Cations , Fluorocarbons/analysis , Hydrophobic and Hydrophilic Interactions , Trifluoroacetic Acid/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...