Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 29(10): 2656-65, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19589670

ABSTRACT

Referring to the industrial wood waste category (as dominant in the provincial district of Pesaro-Urbino, Marche Region, Italy), this paper deals with the experimental characterisation and the carrying out of non-controlled burning tests (at lab- and pilot-scale) for selected "raw" and primarily "engineered" ("composite") wood wastes. The property characterisation has primarily revealed the following aspects: potential influence on moisture content of local weather conditions at outdoor wood waste storage sites; generally, higher ash contents in "engineered" wood wastes as compared with "raw" wood wastes; and relatively high energy content values of "engineered" wood wastes (ranging on the whole from 3675 to 5105 kcal kg(-1) for HHV, and from 3304 to 4634 kcal kg(-1) for LHV). The smoke qualitative analysis of non-controlled lab-scale burning tests has primarily revealed: the presence of specific organic compounds indicative of incomplete wood combustion; the presence exclusively in "engineered" wood burning tests of pyrroles and amines, as well as the additional presence (as compared with "raw" wood burning) of further phenolic and containing nitrogen compounds; and the potential environmental impact of incomplete industrial wood burning on the photochemical smog phenomenon. Finally, non-controlled pilot-scale burning tests have primarily given the following findings: emission presence of carbon monoxide indicative of incomplete wood combustion; higher nitrogen oxide emission values detected in "engineered" wood burning tests as compared with "raw" wood burning test; and considerable generation of the respirable PM(1) fraction during incomplete industrial wood burning.


Subject(s)
Incineration , Interior Design and Furnishings , Refuse Disposal/methods , Wood , Carbon Monoxide/analysis , Humidity , Italy , Nitrogen Oxides/analysis , Smoke/analysis
2.
Ann Chim ; 94(9-10): 715-9, 2004.
Article in English | MEDLINE | ID: mdl-15506622

ABSTRACT

Phenyl acetic acid, a metabolite of 2-phenyl ethylamine, acts as a neuromodulator in the nigrostriatal dopaminergic pathway stimulating the release of dopamine. The evaluation of phenyl acetic acid concentration in the biological fluid reflects phenyl ethylamine levels thus allowing the assessment of the modulatory role of this endogenous substance. Changes in biological fluids levels of 2-phenylethylamine and/or in its metabolite have been reported in affective disorders, such as depression and schizophrenia. Recently, the occurrence of the "attention deficit hyperactivity syndrome" has been frequently reported in childhood population and involvement of dopaminergic dysfunction in this disease has been suspected. A fast, reliable and reproducible method for the determination of phenyl acetic acid in human blood, is therefore needed in order to have a screening tool for monitoring both healthy childhood population and suspected "attention deficit hyperactivity syndrome" patients. The gas chromatographic-mass spectrometric method here described makes use of a deuterated internal standard in order to overcome problems related to the lack of reproducibility often encountered when a derivatization step is performed.


Subject(s)
Antimetabolites, Antineoplastic/blood , Biomarkers/analysis , Phenylacetates/blood , Child , Female , Gas Chromatography-Mass Spectrometry , Humans , Male , Mass Screening , Sensitivity and Specificity
3.
J Chromatogr A ; 988(2): 167-75, 2003 Feb 28.
Article in English | MEDLINE | ID: mdl-12641154

ABSTRACT

Anthropogenic volatile halocarbons are compounds of great enviromnental concern because of their involvement in global change phenomena. They are present in the atmosphere at concentration levels in the order of parts per trillion by volume. The chosen analytical method for their determination is capillary gas chromatography coupled to mass spectrometry, preceded by an enrichment step on suitable adsorbent resins. The method here presented makes use of the solid-phase microextraction as a pre-analytical technique, using sub-ambient temperature in order to enhance the retention capability of the fiber coating. The proposed method was evaluated in terms of extraction efficiency, linearity, reproducibility, andlimits of detection. Results obtained showed that trace atmospheric halocarbons are detectable even when enriching very small air sample volumes. A good chromatographic resolution is obtained as a consequence of the extremely low injection volume. Finally a standard GC-MS instrumentation equipped with a simple split-splitless injector was employed, thus avoiding the use of expensive dedicated apparatus. The method was also applied to the analysis of actual samples collected both in remote, and in semi-remote sites.


Subject(s)
Air Pollutants/analysis , Gas Chromatography-Mass Spectrometry/methods , Halogens/analysis , Atmosphere , Reproducibility of Results , Sensitivity and Specificity , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...