Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Heliyon ; 10(10): e31059, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38803888

ABSTRACT

This study monitored the process and investigated the quality of compost obtained from different biomasses. Five blends of agri-food waste were composted by a laboratory pilot plant named COMPOSTER, that is designed to optimize biodegradation, and produce compost efficiently. The COMPOSTER consists of two 35-liter nearly adiabatic, aerated bioreactors that simulate an industrial process involving the typical sequence of mesophilic-thermophilic-mesophilic phases. It continuously monitors and records temperature, internal pressure, and biomass weight, while controlling and quantifying oxygen consumption and carbon dioxide emissions resulting from aerobic biodegradation. All composts were characterized for their main chemical, physical, and molecular features, as well as their suppressiveness against Fusarium oxysporum f.sp. lycopersici (FOL), tested on tomato seedlings. Optimized biodegradation yielded 50-60 % mature compost with a cumulative oxygen consumption ranging from 282 to 456 gO2 per kg of dry matter, with peaks of 2.55 gO2 per kg of volatile solids per hour, and carbon dioxide emissions of 22-36 % of the initial carbon content, with peaks of 5.89 g CO2 per kg of volatile solids per hour. Blends containing more ligno-cellulosic ingredients showed higher yields and lower CO2 emissions. Most of the nitrogen present initially was retained in the final compost; indeed, all mixtures exhibited an apparent nitrogen concentration increase due to carbon loss. Composting determined deep modifications in the molecular structure of the organic matter. 13C CPMAS-NMR and off-line thermochemolysis GC-MS analyses highlighted decomposition degree of polysaccharides and peptidic moieties, selective preservation of aliphatic and aromatic recalcitrant compounds, and optimal ongoing humification. All composts were non-phytotoxic, except for that including pepper crop residues, and all resulted rich in macro- and micro-elements for plant nutrition and proved to be active in controlling FOL disease. Compost comprising 81.2 % tomato crop waste exhibited the best growth performance and pathogen control on tomato. Mature, non-phytotoxic, nutrient-rich, and suppressive composts represent promising by-products that can be successfully recycled in agriculture, including high-value applications, leading to lower use of fertilizers and pesticides.

2.
Biology (Basel) ; 12(6)2023 May 30.
Article in English | MEDLINE | ID: mdl-37372075

ABSTRACT

Dittrichia viscosa (L.) Greuter subsp. viscosa (Asteraceae) is a perennial species naturally distributed in arid and marginal areas whose agroecological cultivation could be a useful innovation to produce quality biomass to extract phenolic-rich phytochemical blends. Here, biomass-yield trends were profiled at different growth stages under direct cropping, and inflorescences, leaves, and stems were submitted to water extraction and hydrodistillation. Then, four extracts were investigated for their biological activities in invitro and in planta assays. Extracts inhibited cress (Lepidium sativum)- and radish (Raphanus sativus)-seed germination and root elongation. All samples showed dose-dependent antifungal activity in the plate experiments, inhibiting up to 65% of the growth of the fungal pathogen Alternaria alternata, a leaf-spot disease agent of baby spinach (Spinacea oleracea). However, only the extracts from dried green parts and fresh inflorescences at the highest concentration significantly reduced (54%) the extent of Alternaria necrosis on baby spinach. UHPLC-HRMS/MS analysis revealed that the main specialized metabolites of the extracts are caffeoyl quinic acids, methoxylated flavonoids, sesquiterpene compounds such as tomentosin, and dicarboxylic acids, which may explain the observed bioactivity. Plant extracts obtained through sustainable methodology can be effective in biological agricultural applications.

3.
Biosens Bioelectron ; 222: 115005, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36527829

ABSTRACT

The devastating effects of global climate change on crop production and exponential population growth pose a major challenge to agricultural yields. To cope with this problem, crop performance monitoring is becoming increasingly necessary. In this scenario, the use of sensors and biosensors capable of detecting changes in plant fitness and predicting the evolution of their morphology and physiology has proven to be a useful strategy to increase crop yields. Flexible sensors and nanomaterials have inspired the emerging fields of wearable and on-plant portable devices that provide continuous and accurate long-term sensing of morphological, physiological, biochemical, and environmental parameters. This review provides an overview of novel plant sensing technologies by discussing wearable and integrated devices proposed for engineering plant and monitoring its morphological traits and physiological processes, as well as plant-environment interactions. For each application scenario, the state-of-the-art sensing solutions are grouped according to the plant organ on which they have been installed highlighting their main technological advantages and features. Finally, future opportunities, challenges and perspectives are discussed. We anticipate that the application of this technology in agriculture will provide more accurate measurements for farmers and plant scientists with the ability to track crop performance in real time. All of this information will be essential to enable rapid optimization of plants development through tailored treatments that improve overall plant health even under stressful conditions, with the ultimate goal of increasing crop productivity in a more sustainable manner.


Subject(s)
Biosensing Techniques , Agriculture
4.
Front Plant Sci ; 12: 630059, 2021.
Article in English | MEDLINE | ID: mdl-33763091

ABSTRACT

Research has been increasingly focusing on the selection of novel and effective biological control agents (BCAs) against soil-borne plant pathogens. The large-scale application of BCAs requires fast and robust screening methods for the evaluation of the efficacy of high numbers of candidates. In this context, the digital technologies can be applied not only for early disease detection but also for rapid performance analyses of BCAs. The present study investigates the ability of different Trichoderma spp. to contain the development of main baby-leaf vegetable pathogens and applies functional plant imaging to select the best performing antagonists against multiple pathosystems. Specifically, sixteen different Trichoderma spp. strains were characterized both in vivo and in vitro for their ability to contain R. solani, S. sclerotiorum and S. rolfsii development. All Trichoderma spp. showed, in vitro significant radial growth inhibition of the target phytopathogens. Furthermore, biocontrol trials were performed on wild rocket, green and red baby lettuces infected, respectively, with R. solani, S. sclerotiorum and S. rolfsii. The plant status was monitored by using hyperspectral imaging. Two strains, Tl35 and Ta56, belonging to T. longibrachiatum and T. atroviride species, significantly reduced disease incidence and severity (DI and DSI) in the three pathosystems. Vegetation indices, calculated on the hyperspectral data extracted from the images of plant-Trichoderma-pathogen interaction, proved to be suitable to refer about the plant health status. Four of them (OSAVI, SAVI, TSAVI and TVI) were found informative for all the pathosystems analyzed, resulting closely correlated to DSI according to significant changes in the spectral signatures among health, infected and bio-protected plants. Findings clearly indicate the possibility to promote sustainable disease management of crops by applying digital plant imaging as large-scale screening method of BCAs' effectiveness and precision biological control support.

5.
Biology (Basel) ; 9(9)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899876

ABSTRACT

Plants produce a huge array of secondary metabolites that play a key role in defense mechanisms against detrimental microorganisms and herbivores, and represent a suitable alternative to synthetic fungicides in sustainable agriculture. In this work, twelve crude hydroethanolic extracts derived from leaves of different potato cultivars were chemically characterized by LC/MS and their antioxidant properties were investigated in vitro. Furthermore, the biological activity against the fungal pathogen Rhizoctonia solani was evaluated both in vitro and in vivo. Extracts showed the ability to inhibit R. solani growth in vitro and significantly reduced damping-off incidence in in vivo experiments. Furthermore, R. solani mycelia exposed to the extracts showed an altered morphology (low translucency, irregular silhouette, and cytoplasmatic content coagulation) compared to the untreated control in light microscopy examination. Principal component analysis conducted on identified chemical compounds highlighted significant metabolic variations across the different extracts. In particular, those that inhibited most of the growth of the pathogen were found to be enriched in α-chaconine or α-solanine content, indicating that their biological activity is affected by the abundance of these metabolites. These results clearly indicated that plant-derived compounds represent a suitable alternative to chemicals and could lead to the development of new formulates for sustainable control of plant diseases.

6.
Front Microbiol ; 11: 732, 2020.
Article in English | MEDLINE | ID: mdl-32390981

ABSTRACT

Periodic epidemics of black rot disease occur worldwide causing substantial yield losses. Xanthomonas campestris pv. campestris (Xcc) represents one of the most common bacteria able to cause the above disease in cruciferous plants such as broccoli, cabbage, cauliflower, and Arabidopsis thaliana. In agriculture, several strategies are being developed to contain the Xanthomonas infection. The use of bacteriophages could represent a valid and efficient approach to overcome this widespread phenomenon. Several studies have highlighted the potential usefulness of implementing phage therapy to control plant diseases as well as Xcc infection. In the present study, we characterized the effect of a lytic phage on the plant Brassica oleracea var. gongylodes infected with Xcc and, for the first time, the correlated plant metabolic response. The results highlighted the potential benefits of bacteriophages: reduction of bacterium proliferation, alteration of the biofilm structure and/or modulation of the plant metabolism and defense response.

7.
Metabolites ; 10(2)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32019164

ABSTRACT

Marine-derived fungi are an important source of many valuable compounds with original structures and diverse physico-chemical properties. In this work, the metabolomic profile of a strain of Penicillium brevicompactum, recovered from a snakelocks sea anemone (Anemonia sulcata), was investigated through the parallel application of LC-ESI-HRMS, GC-MS, and NMR. Our strategy allowed the identification of mycophenolic acid, brevianamide A, and several compounds belonging to the thiosilvatins. Among the latter, five products are reported for the first time in this species. The main product of this series, cis-bis(methylthio)silvatin, was also tested for antiproliferative activity on both cancer and non-tumoral colon cell lines.

8.
Molecules ; 25(2)2020 Jan 12.
Article in English | MEDLINE | ID: mdl-31940896

ABSTRACT

The aim of this study is to combine advanced GC-MS and metabolite identification in a robust and repeatable technology platform to characterize the metabolome of buffalo milk and mozzarella cheese. The study utilized eleven dairies located in a protected designation of origin (PDO) region and nine dairies located in non-PDO region in Italy. Samples of raw milk (100 mL) and mozzarella cheese (100 g) were obtained from each dairy. A total of 185 metabolites were consistently detected in both milk and mozzarella cheese. The PLS-DA score plots clearly differentiated PDO and non-PDO milk and mozzarella samples. For milk samples, it was possible to divide metabolites into two classes according to region: those with lower concentrations in PDO samples (galactopyranoside, hydroxybuthyric acid, allose, citric acid) and those with lower concentrations in non-PDO samples (talopyranose, pantothenic acid, mannobiose, etc.,). The same was observed for mozzarella samples with the proportion of some metabolites (talopyranose, 2, 3-dihydroxypropyl icosanoate, etc.,) higher in PDO samples while others (tagatose, lactic acid dimer, ribitol, etc.,) higher in non-PDO samples. The findings establish the utility of GC-MS together with mass spectral libraries as a powerful technology platform to determine the authenticity, and create market protection, for "Mozzarella di Bufala Campana."


Subject(s)
Cheese/analysis , Food Analysis/methods , Metabolome , Milk/chemistry , Animals , Buffaloes , Citric Acid/isolation & purification , Female , Galactose/isolation & purification , Glucose/isolation & purification , Hexoses/isolation & purification , Hydroxybutyrates/isolation & purification , Italy , Mannans/isolation & purification , Pantothenic Acid/isolation & purification
9.
BMC Genomics ; 20(1): 485, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31189469

ABSTRACT

BACKGROUND: The growing importance of the ubiquitous fungal genus Trichoderma (Hypocreales, Ascomycota) requires understanding of its biology and evolution. Many Trichoderma species are used as biofertilizers and biofungicides and T. reesei is the model organism for industrial production of cellulolytic enzymes. In addition, some highly opportunistic species devastate mushroom farms and can become pathogens of humans. A comparative analysis of the first three whole genomes revealed mycoparasitism as the innate feature of Trichoderma. However, the evolution of these traits is not yet understood. RESULTS: We selected 12 most commonly occurring Trichoderma species and studied the evolution of their genome sequences. Trichoderma evolved in the time of the Cretaceous-Palaeogene extinction event 66 (±15) mya, but the formation of extant sections (Longibrachiatum, Trichoderma) or clades (Harzianum/Virens) happened in Oligocene. The evolution of the Harzianum clade and section Trichoderma was accompanied by significant gene gain, but the ancestor of section Longibrachiatum experienced rapid gene loss. The highest number of genes gained encoded ankyrins, HET domain proteins and transcription factors. We also identified the Trichoderma core genome, completely curated its annotation, investigated several gene families in detail and compared the results to those of other fungi. Eighty percent of those genes for which a function could be predicted were also found in other fungi, but only 67% of those without a predictable function. CONCLUSIONS: Our study presents a time scaled pattern of genome evolution in 12 Trichoderma species from three phylogenetically distant clades/sections and a comprehensive analysis of their genes. The data offer insights in the evolution of a mycoparasite towards a generalist.


Subject(s)
Evolution, Molecular , Genomics , Trichoderma/genetics , Biopolymers/metabolism , Carbon/metabolism , Extracellular Space/metabolism , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Genes, Fungal/genetics , Hydrolysis , Reproduction , Trichoderma/cytology , Trichoderma/metabolism , Trichoderma/physiology
10.
Front Microbiol ; 9: 1966, 2018.
Article in English | MEDLINE | ID: mdl-30233507

ABSTRACT

The present study investigated the transcriptomic and metabolomic changes elicited in tomato plants (Solanum lycopersicum cv. Micro-Tom) following treatments with the biocontrol agent Trichoderma harzianum strain M10 or its purified secondary metabolite harzianic acid (HA), in the presence or the absence of the soil-borne pathogen Rhizoctonia solani. Transcriptomic analysis allowed the identification of differentially expressed genes (DEGs) that play a pivotal role in resistance to biotic stress. Overall, the results support the ability of T. harzianum M10 to activate defense responses in infected tomato plants. An induction of hormone-mediated signaling was observed, as shown by the up-regulation of genes involved in the ethylene and jasmonate (ET/JA) and salicylic acid (SA)-mediated signaling pathways. Further, the protective action of T. harzianum on the host was revealed by the over-expression of genes able to detoxify cells from reactive oxygen species (ROS). On the other hand, HA treatment also stimulated tomato response to the pathogen by inducing the expression of several genes involved in defense response (including protease inhibitors, resistance proteins like CC-NBS-LRR) and hormone interplay. The accumulation of steroidal glycoalkaloids in the plant after treatments with either T. harzianum or HA, as determined by metabolomic analysis, confirmed the complexity of the plant response to beneficial microbes, demonstrating that these microorganisms are also capable of activating the chemical defenses.

11.
Nat Prod Res ; 30(22): 2575-2581, 2016 Nov.
Article in English | MEDLINE | ID: mdl-26728227

ABSTRACT

Trichoderma based products are considered an alternative to synthetic pesticides and fertilizers. These Trichoderma spp. are among the most studied and applied fungal BCAs in industry and agriculture and are known to secrete several secondary metabolites with different biological activities. The analysis of metabolic profiles (the 'metabolome') of Trichoderma species is complex because of the wide range of compounds produced and the molecular activities identified, including the recently determined role in the activation of plant resistance to biotic and abiotic stresses and growth promotion. A new 10-member lactone, but-2-enoic acid 7-acetoxy-6-hydroxy-2-methyl-10-oxo-5,6,7,8,9,10-hexahydro-2H-oxecin-5-yl ester, named cremenolide (1), has been isolated from culture filtrates of Trichoderma cremeum. The structure of cremenolide was determined by spectroscopic methods, including UV, MS, and 1D and 2D NMR analyses. In vitro tests showed that the purified compound inhibited the radial mycelium growth of Fusarium oxysporum, Botrytis cinerea and Rhizoctonia solani, and exerted a significant promotion of growth of tomato seedlings.

12.
Mol Plant Microbe Interact ; 28(2): 167-79, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25317667

ABSTRACT

Fungi belonging to the genus Trichoderma are among the most active and ecologically successful microbes found in natural environments, because they are able to use a variety of substrates and affect the growth of other microbes and virtually any plant species. We isolated and characterized a novel type II hydrophobin secreted by the biocontrol strain MK1 of Trichoderma longibrachiatum. The corresponding gene (Hytlo1) has a multiple role in the Trichoderma-plant-pathogen three-way interaction, while the purified protein displayed a direct antifungal as well as a microbe-associated molecular pattern and a plant growth promotion (PGP) activity. Leaf infiltration with the hydrophobin systemically increased resistance to pathogens and activated defense-related responses involving reactive oxygen species, superoxide dismutase, oxylipin, phytoalexin, and pathogenesis-related protein formation or activity. The hydrophobin was found to enhance development of a variety of plants when applied at very low doses. It particularly stimulated root formation and growth, as demonstrated also by transient expression of the encoding gene in tobacco and tomato. Targeted knock-out of Hytlo1 significantly reduced both antagonistic and PGP effect of the wild-type strain. We conclude that this protein represents a clear example of a molecular factor developed by Trichoderma spp. to establish a mutually beneficial interaction with the colonized plant.


Subject(s)
Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/physiology , Plant Diseases/microbiology , Plants/microbiology , Trichoderma/metabolism , Cloning, Molecular , Fungal Proteins/genetics , Gene Expression Regulation, Plant/physiology , Pest Control, Biological , Plants/genetics , Plants/metabolism
13.
Molecules ; 19(7): 9760-72, 2014 Jul 08.
Article in English | MEDLINE | ID: mdl-25006784

ABSTRACT

Trichoderma are ubiquitous soil fungi that include species widely used as biocontrol agents in agriculture. Many isolates are known to secrete several secondary metabolites with different biological activities towards plants and other microbes. Harzianic acid (HA) is a T. harzianum metabolite able to promote plant growth and strongly bind iron. In this work, we isolated from the culture filtrate of a T. harzianum strain a new metabolite, named isoharzianic acid (iso-HA), a stereoisomer of HA. The structure and absolute configuration of this compound has been determined by spectroscopic methods, including UV-Vis, MS, 1D and 2D NMR analyses. In vitro applications of iso-HA inhibited the mycelium radial growth of Sclerotinia sclerotiorum and Rhizoctonia solani. Moreover, iso HA improved the germination of tomato seeds and induced disease resistance. HPLC-DAD experiments showed that the production of HA and iso HA was affected by the presence of plant tissue in the liquid medium. In particular, tomato tissue elicited the production of HA but negatively modulated the biosynthesis of its analogue iso-HA, suggesting that different forms of the same Trichoderma secondary metabolite have specific roles in the molecular mechanism regulating the Trichoderma plant interaction.


Subject(s)
Agriculture , Fungi/metabolism , Metabolomics , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Fungi/chemistry , Germination/drug effects , Hydroxybutyrates/chemistry , Hydroxybutyrates/metabolism , Solanum lycopersicum/growth & development , Pest Control, Biological , Plant Growth Regulators/chemistry , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Pyrroles/chemistry , Pyrroles/metabolism , Secondary Metabolism , Soil Microbiology , Trichoderma/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...