Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Chem Biol ; 19(4): 839-854, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38552205

ABSTRACT

In nonsmall cell lung cancer (NSCLC), as well as in other tumors, the targeted therapy is mainly represented by tyrosine kinase inhibitors (TKIs), small molecules able to target oncogenic driver alterations affecting the gene encoding the epidermal growth factor receptor (EGFR). Up to now, several different TKIs have been developed. However, cancer cells showed an incredible adaptive tumor response to the inhibition of the sequentially mutated EGFR (EGFRM+), triggering the need to explore novel pharmacochemical strategies. This Review summarizes the recent efforts in the development of new reversible next-generation EGFR TKIs to fight the resistance against T790M and C797S mutations. Specifically, after giving an overview of the role of the EGFR's signaling pathways in cancer progression, we are going to discuss the most relevant approved drugs and drug candidates in terms of chemical structure, binding modalities, and their potency and selectivity against the mutated EGFR over the wild-type form. This could provide important guidelines and rationale for the discovery and iterative development of new drugs.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , ErbB Receptors/metabolism , Drug Resistance, Neoplasm , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/chemistry
2.
Cancer Res ; 82(14): 2552-2564, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35584009

ABSTRACT

The therapeutic benefit of approved BRAF and MEK inhibitors (BRAFi/MEKi) in patients with brain metastatic BRAF V600E/K-mutated melanoma is limited and transient. Resistance largely occurs through the restoration of MAPK signaling via paradoxical BRAF activation, highlighting the need for more effective therapeutic options. Aiming to address this clinical challenge, we characterized the activity of a potent, brain-penetrant paradox breaker BRAFi (compound 1a, C1a) as first-line therapy and following progression upon treatment with approved BRAFi and BRAFi/MEKi therapies. C1a activity was evaluated in vitro and in vivo in melanoma cell lines and patient-derived models of BRAF V600E-mutant melanoma brain metastases following relapse after treatment with BRAFi/MEKi. C1a showed superior efficacy compared with approved BRAFi in both subcutaneous and brain metastatic models. Importantly, C1a manifested potent and prolonged antitumor activity even in models that progressed on BRAFi/MEKi treatment. Analysis of mechanisms of resistance to C1a revealed MAPK reactivation under drug treatment as the predominant resistance-driving event in both subcutaneous and intracranial tumors. Specifically, BRAF kinase domain duplication was identified as a frequently occurring driver of resistance to C1a. Combination therapies of C1a and anti-PD-1 antibody proved to significantly reduce disease recurrence. Collectively, these preclinical studies validate the outstanding antitumor activity of C1a in brain metastasis, support clinical investigation of this agent in patients pretreated with BRAFi/MEKi, unveil genetic drivers of tumor escape from C1a, and identify a combinatorial treatment that achieves long-lasting responses. SIGNIFICANCE: A brain-penetrant BRAF inhibitor demonstrates potent activity in brain metastatic melanoma, even upon relapse following standard BRAF inhibitor therapy, supporting further investigation into its clinical utility.


Subject(s)
Brain Neoplasms , Melanoma , Brain/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Mitogen-Activated Protein Kinase Kinases , Mutation , Neoplasm Recurrence, Local/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins B-raf
3.
Life Sci Alliance ; 5(9)2022 09.
Article in English | MEDLINE | ID: mdl-35580987

ABSTRACT

MAPK inhibitors (MAPKi) remain an important component of the standard of care for metastatic melanoma. However, acquired resistance to these drugs limits their therapeutic benefit. Tumor cells can become refractory to MAPKi by reactivation of ERK. When this happens, tumors often become sensitive to drug withdrawal. This drug addiction phenotype results from the hyperactivation of the oncogenic pathway, a phenomenon commonly referred to as oncogene overdose. Several feedback mechanisms are involved in regulating ERK signaling. However, the genes that serve as gatekeepers of oncogene overdose in mutant melanoma remain unknown. Here, we demonstrate that depletion of the ERK phosphatase, DUSP4, leads to toxic levels of MAPK activation in both drug-naive and drug-resistant mutant melanoma cells. Importantly, ERK hyperactivation is associated with down-regulation of lineage-defining genes including MITF Our results offer an alternative therapeutic strategy to treat mutant melanoma patients with acquired MAPKi resistance and those unable to tolerate MAPKi.


Subject(s)
Melanoma , Proto-Oncogene Proteins B-raf , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Dual-Specificity Phosphatases/genetics , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Humans , Melanoma/genetics , Melanoma/pathology , Membrane Proteins/metabolism , Microphthalmia-Associated Transcription Factor/genetics , Mitogen-Activated Protein Kinase Phosphatases/genetics , Oncogenes , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics
4.
Antioxidants (Basel) ; 10(8)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34439433

ABSTRACT

The potential of nitrones (N-oxides) as therapeutic antioxidants is due to their ability to counteract oxidative stress, mainly attributed to their action as radical scavengers toward C- and O-centered radicals. Among them, nitrones from the amidinoquinoxaline series resulted in interesting derivatives, due to the ease with which it is possible to introduce proper substituents within their structure in order to modulate their lipophilicity. The goal is to obtain lipophilic antioxidants that are able to interact with cell membranes and, at the same time, enough hydrophilic to neutralize those radicals present in a water compartment. In this work, the antioxidant efficacy of a series of amidinoquinoxaline nitrones has been evaluated regarding the oxidation of 2-deoxyribose and lipid peroxidation. The results have been rationalized on the basis of the different possible mechanisms involved, depending on some of their properties, such as lipophilicity, the ability to scavenge free radicals, and to undergo single electron transfer (SET) reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...