Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 65(5): 4201-4217, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35195401

ABSTRACT

The 5-HT5A receptor (5-HT5AR), for which no selective agonists and a few antagonists exist, remains the least understood serotonin receptor. A single commercial antagonist, SB-699551, has been widely used to investigate the 5-HT5AR function in neurological disorders, including pain, but this molecule has substantial liabilities as a chemical probe. Accordingly, we sought to develop an internally controlled probe set. Docking over 6 million molecules against a 5-HT5AR homology model identified 5 mid-µM ligands, one of which was optimized to UCSF678, a 42 nM arrestin-biased partial agonist at the 5-HT5AR with a more restricted off-target profile and decreased assay liabilities versus SB-699551. Site-directed mutagenesis supported the docked pose of UCSF678. Surprisingly, analogs of UCSF678 that lost the 5-HT5AR activity revealed that 5-HT5AR engagement is nonessential for alleviating pain, contrary to studies with less-selective ligands. UCSF678 and analogs constitute a selective probe set with which to study the function of the 5-HT5AR.


Subject(s)
Serotonin Antagonists , Serotonin , Humans , Ligands , Pain , Receptors, Serotonin , Serotonin Antagonists/pharmacology
2.
JCI Insight ; 2(22)2017 11 16.
Article in English | MEDLINE | ID: mdl-29202454

ABSTRACT

W-18 (4-chloro-N-[1-[2-(4-nitrophenyl)ethyl]-2-piperidinylidene]-benzenesulfonamide) and W-15 (4-chloro-N-[1-(2-phenylethyl)-2-piperidinylidene]-benzenesulfonamide) represent two emerging drugs of abuse chemically related to the potent opioid agonist fentanyl (N-(1-(2-phenylethyl)-4-piperidinyl)-N-phenylpropanamide). Here, we describe the comprehensive pharmacological profiles of W-18 and W-15, as examination of their structural features predicted that they might lack opioid activity. We found W-18 and W-15 to be without detectible activity at µ, δ, κ, and nociception opioid receptors in a variety of assays. We also tested W-18 and W-15 for activity as allosteric modulators at opioid receptors and found them devoid of significant positive or negative allosteric modulatory activity. Comprehensive profiling at essentially all the druggable GPCRs in the human genome using the PRESTO-Tango platform revealed no significant activity. Weak activity at the sigma receptors and the peripheral benzodiazepine receptor was found for W-18 (Ki = 271 nM). W-18 showed no activity in either the radiant heat tail-flick or the writhing assays and also did not induce classical opioid behaviors. W-18 is extensively metabolized, but its metabolites also lack opioid activity. Thus, although W-18 and W-15 have been suggested to be potent opioid agonists, our results reveal no significant activity at these or other known targets for psychoactive drugs.


Subject(s)
Designer Drugs/chemistry , Designer Drugs/pharmacology , Fentanyl/chemistry , Fentanyl/pharmacology , Analgesics, Opioid , Animals , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Illicit Drugs , Mice , Receptor, Cannabinoid, CB1/drug effects , Receptor, Cannabinoid, CB2/drug effects , Receptors, Opioid/drug effects , Receptors, Serotonin/drug effects
3.
J Med Chem ; 60(7): 3070-3081, 2017 04 13.
Article in English | MEDLINE | ID: mdl-28339199

ABSTRACT

The ongoing epidemics of opioid overdose raises an urgent need for effective antiaddiction therapies and addiction-free painkillers. The κ-opioid receptor (KOR) has emerged as a promising target for both indications, raising demand for new chemotypes of KOR antagonists as well as G-protein-biased agonists. We employed the crystal structure of the KOR-JDTic complex and ligand-optimized structural templates to perform virtual screening of available compound libraries for new KOR ligands. The prospective virtual screening campaign yielded a high 32% hit rate, identifying novel fragment-like and lead-like chemotypes of KOR ligands. A round of optimization resulted in 11 new submicromolar KOR binders (best Ki = 90 nM). Functional assessment confirmed at least two compounds as potent KOR antagonists, while compound 81 was identified as a potent Gi biased agonist for KOR with minimal ß-arrestin recruitment. These results support virtual screening as an effective tool for discovery of new lead chemotypes with therapeutically relevant functional profiles.


Subject(s)
Drug Design , Narcotic Antagonists/chemistry , Narcotic Antagonists/pharmacology , Receptors, Opioid, kappa/agonists , Receptors, Opioid, kappa/antagonists & inhibitors , Animals , HEK293 Cells , Humans , Molecular Docking Simulation , Prospective Studies , Receptors, Opioid, kappa/metabolism , Structure-Activity Relationship
4.
Nature ; 527(7579): 477-83, 2015 Nov 26.
Article in English | MEDLINE | ID: mdl-26550826

ABSTRACT

At least 120 non-olfactory G-protein-coupled receptors in the human genome are 'orphans' for which endogenous ligands are unknown, and many have no selective ligands, hindering the determination of their biological functions and clinical relevance. Among these is GPR68, a proton receptor that lacks small molecule modulators for probing its biology. Using yeast-based screens against GPR68, here we identify the benzodiazepine drug lorazepam as a non-selective GPR68 positive allosteric modulator. More than 3,000 GPR68 homology models were refined to recognize lorazepam in a putative allosteric site. Docking 3.1 million molecules predicted new GPR68 modulators, many of which were confirmed in functional assays. One potent GPR68 modulator, ogerin, suppressed recall in fear conditioning in wild-type but not in GPR68-knockout mice. The same approach led to the discovery of allosteric agonists and negative allosteric modulators for GPR65. Combining physical and structure-based screening may be broadly useful for ligand discovery for understudied and orphan GPCRs.


Subject(s)
Benzyl Alcohols/chemistry , Benzyl Alcohols/pharmacology , Drug Discovery , Lorazepam/chemistry , Lorazepam/pharmacology , Receptors, G-Protein-Coupled/metabolism , Triazines/chemistry , Triazines/pharmacology , Allosteric Regulation/drug effects , Allosteric Site , Animals , Anti-Anxiety Agents/analysis , Anti-Anxiety Agents/chemistry , Anti-Anxiety Agents/metabolism , Anti-Anxiety Agents/pharmacology , Benzyl Alcohols/analysis , Benzyl Alcohols/metabolism , Conditioning, Classical , Fear , Female , HEK293 Cells , Humans , Ligands , Lorazepam/analysis , Lorazepam/metabolism , Male , Memory/drug effects , Mice , Mice, Knockout , Models, Molecular , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/deficiency , Signal Transduction/drug effects , Triazines/analysis , Triazines/metabolism
5.
Nat Commun ; 5: 4355, 2014 Jul 10.
Article in English | MEDLINE | ID: mdl-25008467

ABSTRACT

The Smoothened receptor (SMO) mediates signal transduction in the hedgehog pathway, which is implicated in normal development and carcinogenesis. SMO antagonists can suppress the growth of some tumours; however, mutations at SMO have been found to abolish their antitumour effects, a phenomenon known as chemoresistance. Here we report three crystal structures of human SMO bound to the antagonists SANT1 and Anta XV, and the agonist, SAG1.5, at 2.6-2.8 Å resolution. The long and narrow cavity in the transmembrane domain of SMO harbours multiple ligand binding sites, where SANT1 binds at a deeper site as compared with other ligands. Distinct interactions at D473(6.54f) elucidated the structural basis for the differential effects of chemoresistance mutations on SMO antagonists. The agonist SAG1.5 induces a conformational rearrangement of the binding pocket residues, which could contribute to SMO activation. Collectively, these studies reveal the structural basis for the modulation of SMO by small molecules.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Resistance, Neoplasm/physiology , Models, Molecular , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/drug effects , Crystallography , Cyclohexylamines/pharmacology , Hedgehog Proteins/physiology , Humans , Lysine/analogs & derivatives , Lysine/pharmacology , Phthalazines/pharmacology , Piperazines/pharmacology , Pyrazoles/pharmacology , Receptors, G-Protein-Coupled/physiology , Signal Transduction/physiology , Smoothened Receptor , Thiophenes/pharmacology
6.
J Med Chem ; 57(9): 3746-54, 2014 May 08.
Article in English | MEDLINE | ID: mdl-24697290

ABSTRACT

(-)-P7C3-S243 is a neuroprotective aminopropyl carbazole with improved druglike properties compared with previously reported compounds in the P7C3 class. It protects developing neurons in a mouse model of hippocampal neurogenesis and protects mature neurons within the substantia nigra in a mouse model of Parkinson's disease. A short, enantioselective synthesis provides the neuroprotective agent in optically pure form. It is nontoxic, orally bioavailable, metabolically stable, and able to cross the blood-brain barrier. As such, it represents a valuable lead compound for the development of drugs to treat neurodegenerative diseases and traumatic brain injury.


Subject(s)
Carbazoles/pharmacology , Neuroprotective Agents/pharmacology , Animals , Area Under Curve , Disease Models, Animal , Drug Discovery , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred C57BL , Neuroprotective Agents/pharmacokinetics , Parkinson Disease/pathology , Spectrometry, Mass, Electrospray Ionization , Substantia Nigra/pathology
7.
Nat Chem Biol ; 7(8): 566-74, 2011 Jul 10.
Article in English | MEDLINE | ID: mdl-21743462

ABSTRACT

Protein lysine methyltransferases G9a and GLP modulate the transcriptional repression of a variety of genes via dimethylation of Lys9 on histone H3 (H3K9me2) as well as dimethylation of non-histone targets. Here we report the discovery of UNC0638, an inhibitor of G9a and GLP with excellent potency and selectivity over a wide range of epigenetic and non-epigenetic targets. UNC0638 treatment of a variety of cell lines resulted in lower global H3K9me2 levels, equivalent to levels observed for small hairpin RNA knockdown of G9a and GLP with the functional potency of UNC0638 being well separated from its toxicity. UNC0638 markedly reduced the clonogenicity of MCF7 cells, reduced the abundance of H3K9me2 marks at promoters of known G9a-regulated endogenous genes and disproportionately affected several genomic loci encoding microRNAs. In mouse embryonic stem cells, UNC0638 reactivated G9a-silenced genes and a retroviral reporter gene in a concentration-dependent manner without promoting differentiation.


Subject(s)
Enzyme Inhibitors/pharmacology , Histone-Lysine N-Methyltransferase/metabolism , Quinazolines/pharmacology , Animals , Cell Line , Gene Silencing , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/genetics , Humans , Mice , Molecular Structure
8.
Assay Drug Dev Technol ; 8(6): 727-42, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21158687

ABSTRACT

The human Ether-à-go-go related gene (hERG) potassium channel is responsible for the rapid delayed rectifier potassium current that plays a critical role in the repolarization of cardiomyocytes during the cardiac action potential. In humans, inhibition of hERG by drugs can prolong the electrocardiographic QT interval, which, in rare instance, leads to ventricular arrhythmia and sudden cardiac death. As such, several medications that block hERG channels in vitro have been withdrawn from the market due to QT prolongation and arrhythmias. The current FDA guidelines recommend that drug candidates destined for human use be evaluated for potential hERG activity ( www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm074963.pdf ). Here, we employed automated planar patch clamp (APPC), high-throughput fluorescent Tl(+) flux, and moderate-throughput [³H]dofetilide competition binding assays to characterize a panel of 49 drugs for their activities at the hERG channel. Notably, we used the same HEK293-hERG cell line for all assays, facilitating comparisons of hERG potencies across screening platforms. In general, hERG inhibitors were most potent in APPC assays, intermediate potent in [³H]dofetilide binding assays, and least potent in Tl(+) flux assays. Binding affinity constants (pK(i) values) and Tl(+) flux potencies (pEC50 values) correlated well with APPC pEC50 values. Further, the inhibitory potencies of many known hERG inhibitors in APPC matched literature values from manual and/or automated patch clamp systems. We also developed a novel fluorescent Tl(+) flux assays to measure the effects of drugs that modulate hERG trafficking and surface expression.


Subject(s)
Drug Discovery , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Potassium Channel Blockers/pharmacology , Ether-A-Go-Go Potassium Channels/metabolism , HEK293 Cells , High-Throughput Screening Assays , Humans , Patch-Clamp Techniques , Radioligand Assay , Thallium/metabolism
9.
J Med Chem ; 52(13): 3892-901, 2009 Jul 09.
Article in English | MEDLINE | ID: mdl-19469546

ABSTRACT

We have previously reported the discovery and preliminary structure activity relationships of a series of beta-aminoketones that disrupt the binding of coactivators to TR. However, the most active compounds had moderate inhibitory potency and relatively high cytotoxicity, resulting in narrow therapeutic index. Additionally, preliminary evaluation of in vivo toxicology revealed a significant dose related cardiotoxicity. Here we describe the improvement of pharmacological properties of thyroid hormone receptor coactivator binding inhibitors. A comprehensive survey of the effects of substitutents in key areas of the molecule was carried out based on mechanistic insight from the earlier report. This study revealed that both electron withdrawing and hydrophobic substituents on the aromatic ring led to higher potency. On the other hand, moving from an alkyl to a sulfonyl alkyl side chain led to reduced cytotoxicity. Finally, utilization of amine moieties having low pK(a)'s resulted in lowered ion channel activity without any loss of pharmacological activity.


Subject(s)
Antithyroid Agents/chemistry , Ketones/chemistry , Receptors, Thyroid Hormone/antagonists & inhibitors , Amines , Antithyroid Agents/adverse effects , Antithyroid Agents/pharmacology , Cell Line , Cell Survival/drug effects , Humans , Inhibitory Concentration 50 , Ion Channels/chemistry , Ion Channels/metabolism , Ketones/chemical synthesis , Ketones/pharmacology , Protein Binding/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...