Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(3): e0300134, 2024.
Article in English | MEDLINE | ID: mdl-38547304

ABSTRACT

Virulent strain Pseudomonas aeruginosa isolated from Mahananda River exhibited the highest hemolytic activity and virulence factors and was pathogenic to fish as clinical signs of hemorrhagic spots, loss of scales, and fin erosions were found. S3 was cytotoxic to the human liver cell line (WRL-68) in the trypan blue dye exclusion assay. Genotype characterization using whole genome analysis showed that S3 was similar to P. aeruginosa PAO1. The draft genome sequence had an estimated length of 62,69,783 bp, a GC content of 66.3%, and contained 5916 coding sequences. Eight genes across the genome were predicted to be related to hemolysin action. Antibiotic resistance genes such as class C and class D beta-lactamases, fosA, APH, and catB were detected, along with the strong presence of multiple efflux system genes. This study shows that river water is contaminated by pathogenic P. aeruginosa harboring an array of virulence and antibiotic resistance genes which warrants periodic monitoring to prevent disease outbreaks.


Subject(s)
Anti-Bacterial Agents , Pseudomonas Infections , Animals , Humans , Anti-Bacterial Agents/pharmacology , Pseudomonas aeruginosa , Rivers , Virulence/genetics
2.
Front Vet Sci ; 9: 887174, 2022.
Article in English | MEDLINE | ID: mdl-35754535

ABSTRACT

Aeromonas is omnipresent in aquatic environments and cause disease within a wide host range. A total of thirty-four isolates from water samples of small fish farms were identified as Aeromonas based on biochemical characteristics and 16S rRNA gene sequence. A total of six virulent factors were analyzed which indicated 100% of isolates as beta-haemolytic and proteolytic, whereas 44.1, 38.2, and 70.6% of isolates produced DNAse, siderophore, and amylase, respectively. Studies on the occurrence of four genetic determinants of virulence factors revealed that aer/haem (haemolytic toxin) and flaA (polar flagella) genes were present in 44.1% of strains whereas ascV (type 3 secretion system) and aspA (serine protease) genes were detected in 21.5 and 8.82% of strains, respectively. Fish (Anabas testudineus) challenge studies showed that the isolate GP3 (Aeromonas veronii) bearing five virulent factors with the combination of aer/haem + /ascV + /fla + genes induced severe lesions leading to 100% of mortality. In contrast, RB7 possessing four virulence factors and three genes (aer/haem + /ascV + /aspA +) could not produce severe lesions and any mortality indicating the absence of correlation between the virulence factors, its genes, and the pathogenicity in fishes. GP3 was cytotoxic to human liver cell line (WRL-68) in trypan blue dye exclusion assay. The 431 bp aer/haem gene of GP3 was transferable to E. coli Dh5α with a conjugational efficiency of 0.394 × 10 -4 transconjugants per recipient cell. The transfer was confirmed by PCR and by the presence of 23-kb plasmids in both donor and transconjugants. Therefore, the occurrence of mobile genetic elements bearing virulence-associated genes in Aeromonas indicates the need for periodic monitoring of the aquatic habitat to prevent disease outbreaks.

3.
PLoS One ; 13(2): e0191761, 2018.
Article in English | MEDLINE | ID: mdl-29466418

ABSTRACT

The aim of the present study is to evaluate plant growth promoting and biocontrol efficacy of a Serratia marcescens strain ETR17 isolated from tea rhizosphere for the effective management of root rot disease in tea. Isolated bacterial culture ETR17 showed significant level of in vitro antagonism against nine different foliar and root pathogens of tea. The phenotypic and molecular characterization of ETR17 revealed the identity of the bacterium as Serratia marcescens. The bacterium was found to produce several hydrolytic enzymes like chitinase, protease, lipase, cellulase and plant growth promoting metabolites like IAA and siderophore. Scanning electron microscopic studies on the interaction zone between pathogen and antagonistic bacterial isolate revealed severe deformities in the fungal mycelia. Spectral analyses (LC-ESI-MS, UV-VIS spectrophotometry and HPLC) and TLC indicated the presence of the antibiotics pyrrolnitrin and prodigiosin in the extracellular bacterial culture extracts. Biofilm formation by ETR17 on polystyrene surface was also observed. In vivo application of talc-based formulations prepared with the isolate ETR17 in tea plantlets under green house conditions revealed effective reduction of root-rot disease as well as plant growth promotion to a considerable extent. Viability studies with the ETR17 talc formulation showed the survivability of the isolate up to six months at room temperature. The sustenance of ETR17 (concentration of 8-9x108 cfu g-1) in the soil after the application of talc formulation was recorded by ELISA. Safety studies revealed that ETR17 did not produce hemolysin as observed in pathogenic Serratia strains. The biocontrol strain reported in this study can be used for field application in order to minimize the use of chemical fungicides for disease control in tea gardens.


Subject(s)
Plant Diseases/prevention & control , Plant Roots/microbiology , Rhizosphere , Serratia marcescens/pathogenicity , Tea/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...