Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Appl Microbiol ; 126(2): 377-387, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30307684

ABSTRACT

AIMS: Carnobacterium maltaromaticum is a lactic acid bacterium of technological interest in the field of dairy ripening and food bioprotection and is generally recognized as safe in the United States. As it is associated with fish infections, the European Food Safety Agency did not include this species in the qualified presumption safety list of micro-organisms. This implies that the risk assessment for the species has to be performed at the strain level. METHODS AND RESULTS: Multilocus sequence typing (MLST) is a tool that (i) potentially allows to discriminate strains isolated from diseased fish from apathogenic strains and (ii) to assess the genetic relatedness between both groups of strains. In this study, we characterized by MLST 21 C. maltaromaticum strains including 16 strains isolated from diseased fish and 5 apathogenic dairy strains isolated from cheese. The resulting population structure was investigated by integrating these new data to the previously published population structure (available at http://pubmlst.org), which represents an overall of 71 strains. CONCLUSIONS: This analysis revealed that none of the strains isolated from diseased fish is assigned to a clonal complex containing cheese isolates, and that 11 strains exhibit singleton genotypes suggesting that the population of diseased fish isolates is not clonal. SIGNIFICANCE AND IMPACT OF THE STUDY: This study thus provides a population structure of C. maltaromaticum that could serve in the future as a reference that could contribute to the risk assessment of C. maltaromaticum strains intended to be used in the food chain.


Subject(s)
Carnobacterium/classification , Cheese/microbiology , Fish Diseases/microbiology , Gram-Positive Bacterial Infections/veterinary , Animals , Carnobacterium/genetics , Carnobacterium/isolation & purification , Fishes , Genotype , Gram-Positive Bacterial Infections/microbiology , Multilocus Sequence Typing
2.
Planta ; 233(6): 1147-56, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21318288

ABSTRACT

Variations in the quality of wheat kernels can be an important problem in the cereal industry. In particular, desiccation conditions play an essential role in both the technological characteristics of the kernel and its ability to sprout. In planta desiccation constitutes a key stage in the determinism of the functional properties of seeds. The impact of desiccation on the endosperm texture of seed is presented in this work. A simple imaging system had previously been developed to acquire multivariate images to characterize the heterogeneity of food materials. A special algorithm for the use under principal component analysis (PCA) was developed to process the acquired multivariate images. Wheat grains were collected at physiological maturity, and were subjected to two types of drying conditions that induced different kinetics of water loss. A data set containing 24 images (dimensioned 702 × 524 pixels) corresponding to the different desiccation stages of wheat kernels was acquired at different wavelengths and then analyzed. A comparison of the images of kernel sections highlighted changes in kernel texture as a function of their drying conditions. Slow drying led to a floury texture, whereas fast drying caused a glassy texture. The automated imaging system thus developed is sufficiently rapid and economical to enable the characterization in large collections of grain texture as a function of time and water content.


Subject(s)
Imaging, Three-Dimensional/methods , Seeds/anatomy & histology , Triticum/anatomy & histology , Algorithms , Desiccation , Multivariate Analysis , Principal Component Analysis/methods , Seeds/chemistry , Seeds/metabolism , Triticum/chemistry , Triticum/metabolism , Water/chemistry , Water/metabolism
3.
Biomacromolecules ; 5(4): 1596-601, 2004.
Article in English | MEDLINE | ID: mdl-15244483

ABSTRACT

Wheat gluten films were prepared by thermo-pressing, and their mechanical properties were compared to those of cast films. The stress-strain relationship was established for films with various amounts of glycerol. Both relationships were quite different, revealing a different network organization. Thermo-pressed films presented higher stress values than cast films, but the effect of the glycerol amount was similar in both cases, an increase of the glycerol amount leading to a decrease of both films stress. The glycerol influence on the strain at break of thermo-pressed films was very limited, with strain values reaching a maximum around 200%. The role of disulfide bridges on themomoulded films mechanical properties was investigated, and it was shown that some rearrangements and a significative protein insolubilization occurred during the process. The effective flow porosity of the protein network for thermo-pressed films was estimated by water capillary rise measurements to about 7%. Scanning electron microscopy was used to obtain some information about the microstructure of both cast and thermo-pressed films.


Subject(s)
Glutens/chemistry , Glutens/ultrastructure , Membranes, Artificial , Triticum/chemistry , Disulfides/chemistry , Particle Size , Polymers/chemistry , Temperature , Time Factors
4.
J Agric Food Chem ; 51(5): 1447-52, 2003 Feb 26.
Article in English | MEDLINE | ID: mdl-12590496

ABSTRACT

The influence of a set of hydrophilic plasticizers varying in their chain length (ethyleneglycol and longer molecules) on the tensile strength and elongation at break of cast gluten films was studied. When considered on a molar basis (moles of plasticizer per mole of amino acid), the effect of the different plasticizers depended on their respective molecular weights for plasticizer/amino acid ratios in the range from 0.10 to 0.40. However, above a ratio of 0.40-0.50 mol/mol of amino acid, these differences were abolished and both stress and strain reached a plateau value, with all plasticizers studied. In fact, when a homologous series of molecules was considered, the ability for plasticizer to decrease stress and increase strain was closely related to the number of hydrogen bonds the molecule was able to share with the protein network. Ethyleneglycol's efficiency was, however, lower than expected from its hydrogen-bonding potential; a comparison with other diols demonstrated that this was due to the small size of this molecule. The particular effect of glycerol concentration on the films' mechanical properties suggested that other molecular features of the plasticizer, such as the number and position of hydroxide groups in the molecule, were involved in the plasticization mechanism.


Subject(s)
Glutens/chemistry , Plasticizers/chemistry , Plasticizers/pharmacology , Triticum/chemistry , Ethylene Glycol/chemistry , Ethylene Glycol/pharmacology , Hydrogen Bonding , Molecular Weight , Structure-Activity Relationship , Tensile Strength/drug effects
5.
J Agric Food Chem ; 49(2): 867-72, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11262042

ABSTRACT

The secondary structures of wheat gliadins (a major storage protein fraction from gluten) in film-forming solutions and their evolution during film formation were investigated by Fourier transform infrared spectroscopy. In the film-forming solution, wheat gliadins presented a mixture of different secondary structures, with an important contribution of beta-turns induced by proline residues. The presence of plasticizer did not have any influence on protein secondary structure in the film-forming solution. The evolution of protein conformation was followed during drying; the major feature of this evolution was a clear growing of the infrared band at 1622 cm(-1), characteristic of intermolecular hydrogen-bonded beta-sheets. This revealed the formation of protein aggregates during film drying. The influence of the drying temperature on film properties and gliadin secondary structures was also investigated. Higher drying temperatures induced an increase of both the tensile strength of the films and the amount of beta-sheets aggregates. Although the appearance of heat-induced disulfide bridge cross-links has already been described, there is clear evidence that hydrogen-bonded beta-sheets aggregates are also induced by thermal treatment. It was not possible, however, to determine whether there is a direct relationship between the occurrence of these aggregates and the increase of the tensile strength of the films.


Subject(s)
Gliadin/chemistry , Triticum , Plasticizers , Protein Conformation , Protein Structure, Secondary , Spectroscopy, Fourier Transform Infrared/methods
6.
Biochim Biophys Acta ; 1371(2): 265-83, 1998 May 28.
Article in English | MEDLINE | ID: mdl-9630666

ABSTRACT

A cationic amphiphilic peptide made of 10 leucine and 10 lysine residues, and four of its fluorescent derivatives in which leucines were substituted by Trp residues at different locations on the primary sequence have been synthesized. The interactions of these five peptides with neutral anionic or cationic vesicles were investigated using circular dichroism, steady state and time-resolved fluorescence with a combination of Trp quenching by brominated lipid probes, monolayers, modeling with minimization and simulated annealing procedures. We show that all the five peptides interact with neutral and anionic DMPC, DMPG, DOPC or egg yolk PC vesicles. The binding takes place whatever the peptide conformation in solution is. In the case of DMPC bilayers the binding free energy DeltaG is estimated at -8 kcal mole-1 and the number of phospholipid molecules involved is about 20-25 per peptide molecule. Peptides are bound as single-stranded alpha helices orientated parallel to the bilayer surface. In the anchoring of phospholipid head groups around the peptides, the lipid molecules are not smeared out in a plane parallel to the membrane surface but are organized around the hydrophilic face of the alpha helices like 'wheat grains around an ear' and protrude outside the bilayer towards the solvent. We suggest that such a lipid arrangement generates transient structural defects responsible for the membrane permeability enhancement. When an electrical potential is applied, the axis of the peptide helices remains parallel to the membrane surface and does not reorient to give rise to a bundle of helix monomers that forms transmembrane channels via a 'barrel stave' mechanism. The penetration depth of alpha helices in relation to the position of phosphorus atoms in the unperturbed lipid leaflet is estimated at 3.2 A.


Subject(s)
Liposomes/chemistry , Models, Chemical , Models, Molecular , Peptides/chemical synthesis , Surface-Active Agents/chemistry , Amino Acid Sequence , Anions , Cations , Circular Dichroism , Membrane Potentials , Membranes, Artificial , Molecular Sequence Data , Peptides/chemistry , Phosphatidylcholines/chemistry , Protein Binding , Spectrometry, Fluorescence , Thermodynamics , Tryptophan/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...