Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(1 Pt 1): 011605, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19257043

ABSTRACT

Three-dimensional interface patterns are common in condensed matter, whose dynamical behavior is still deserving clarification. The dynamics of cellular patterns formed at the concave solid-liquid interface during directional solidification in a cylinder of a transparent alloy is studied by means of bright-field live imaging. For each pulling velocity, in situ observation shows that the asymptotic cellular pattern, which establishes with time, is characterized by the continuous birth of a large number of cells at a circular source of morphological instability on the periphery, the sustained collective gliding of the whole cellular array down the interface slope, and the elimination of coarse cells at the central sink. This very peculiar dynamics is the specific signature of the cell advection imposed by interface curvature for the concave situation in three-dimensional solidification. It follows from the comparison between experimental cell gliding and pure slope advection that an additional mechanism of pattern advection is active. It is attributed to fluid flow interaction, estimated on the basis of the Forth and Wheeler traveling wave equations.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 74(3 Pt 1): 031605, 2006 Sep.
Article in English | MEDLINE | ID: mdl-17025641

ABSTRACT

Quasicrystal growth remains an unsolved problem in condensed matter. The dynamics of the process is studied by means of synchrotron live imaging all along the solidification of icosahedral AlPdMn quasicrystals. The lateral motion of ledges driving faceted growth at the solid-melt interface is conclusively shown. When the solidification rate is increased, nucleation and free growth of new faceted grains occur in the melt due to the significant interface recoil induced by slow attachment kinetics. The detailed analysis of the evolution of these grains reveals the crucial role of aluminum rejection, both in the poisoning of their growth and driving fluid flow.

SELECTION OF CITATIONS
SEARCH DETAIL
...