Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Main subject
Language
Publication year range
1.
Molecules ; 27(5)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35268768

ABSTRACT

The presence of inorganic and organic substances may alter the physicochemical properties of iron (Fe) salt precipitates, thereby stabilizing the antimony (Sb) oxyanions in potable water during the chemical treatment process. Therefore, the present study aimed to examine the surface characteristics, size of Fe flocs and coagulation performance of Sb oxyanions under different aqueous matrices. The results showed that surface properties of Fe flocs significantly varies with pH in both Sb(III, V) suspensions, thereby increasing the mobility of Sb(V) ions in alkaline conditions. The negligible change in surface characteristics of Fe flocs was observed in pure water and Sb(III, V) suspension at pH 7. The key role of Van der Waals forces of attraction as well as hydration force in the aggregation of early formed flocs were found, with greater agglomeration capability at higher more ferric chloride dosage. The higher Sb(V) loading decreased the size of Fe flocs and reversed the surface charge of precipitates, resulting in a significant reduction in Sb(V) removal efficiency. The competitive inhibition effect on Sb(III, V) removal was noticed in the presence of phosphate anions, owing to lowering of ζ-potential values towards more negative trajectory. The presence of hydrophobic organic matter (humic acid) significantly altered the surface characteristics of Fe flocs, thereby affecting the coagulation behavior of Sb in water as compared to the hydrophilic (salicylic acid). Overall, the findings of this research may provide a new insight into the variation in physicochemical characteristics of Fe flocs and Sb removal behavior in the presence of inorganic and organic compounds during the drinking water treatment process.

2.
Environ Sci Pollut Res Int ; 29(3): 4748-4761, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34410601

ABSTRACT

Pakistan has remained an energy-deficient country, and most of the industrial sectors are closed due to the loading shedding of electricity. Even though Pakistan is located on the "solar belt" and receives over 2 MWh/m2 solar irradiation per year with 1500-3000 h of sunshine, unfortunately solar energy is not harnessed to fulfill the energy needs of the country. Solar flat plate collectors (SFPC) are widely employed for collecting solar radiations from the sun. Currently, worldwide solar thermal energy is widely used in household and commercial equipment for energy collection and utilization. The working fluid selected for this research work is water; numerical simulations were performed using Ansys FLUENT. On selected geographical coordinates, solar ray tracing model was employed to incorporate solar heat flux. Nawabshah (NWB), Hyderabad (HYB), Jacobabad (JCB), and Mirpurkhas (MPK) cities were selected for the measuring of performance of SPFC. Firstly, parallel to ground (at a 0° tilt angle) orientation of SFPC was performed. Furthermore, the performance of SFPC was measured using tilt angles of 15°, 30°, and 45°, respectively. The maximum exit water temperature in JCB at a tilt angle of 30° was 97.8 °C in March and a minimum of 88.09 °C in June. In HYD, at a tilt angle of 45°, the maximum temperature rise was recorded at 98.01 °C in November and the minimum was noticed at 76.37 °C in June. While in JCA, at an angle of 30°, the highest temperature was recorded at 97.83 °C in February and a minimum of 78.54 °C in June. The specific aim of this research study was to measure the performance of the SFPC at different tilt angles and at varying geographical coordinates through numerical simulations.


Subject(s)
Solar Energy , Hot Temperature , Pakistan , Temperature , Water
SELECTION OF CITATIONS
SEARCH DETAIL