Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Sports Sci Med ; 18(3): 438-447, 2019 09.
Article in English | MEDLINE | ID: mdl-31427865

ABSTRACT

Monitoring the upper arm propulsion is a crucial task for swimmer performance. The swimmer indeed can produce displacement of the body by modulating the upper limb kinematics. The present study proposes an approach for automatically recognize all stroke phases through three-dimensional (3D) wrist's trajectory estimated using inertial devices. Inertial data of 14 national-level male swimmer were collected while they performed 25 m front-crawl trial at intensity range from 75% to 100% of their 25 m maximal velocity. The 3D coordinates of the wrist were computed using the inertial sensors orientation and considering the kinematic chain of the upper arm biomechanical model. An algorithm that automatically estimates the duration of entry, pull, push, and recovery phases result from the 3D wrist's trajectory was tested using the bi-dimensional (2D) video-based systems as temporal reference system. A very large correlation (r = 0.87), low bias (0.8%), and reasonable Root Mean Square error (2.9%) for the stroke phases duration were observed using inertial devices versus 2D video-based system methods. The 95% limits of agreement (LoA) for each stroke phase duration were always lower than 7.7% of cycle duration. The mean values of entry, pull, push and recovery phases duration in percentage of the complete cycle detected using 3D wrist's trajectory using inertial devices were 34.7 (± 6.8)%, 22.4 (± 5.8)%, 14.2 (± 4.4)%, 28.4 (± 4.5)%. The swimmer's velocity and arm coordination model do not affect the performance of the algorithm in stroke phases detection. The 3D wrist trajectory can be used for an accurate and complete identification of the stroke phases in front crawl using inertial sensors. Results indicated the inertial sensor device technology as a viable option for swimming arm-stroke phase assessment.


Subject(s)
Accelerometry/instrumentation , Arm/physiology , Motor Skills/physiology , Swimming/physiology , Algorithms , Biomechanical Phenomena , Humans , Male , Reproducibility of Results , Time and Motion Studies , Video Recording , Wearable Electronic Devices , Wrist , Young Adult
2.
Front Comput Neurosci ; 11: 57, 2017.
Article in English | MEDLINE | ID: mdl-28713259

ABSTRACT

The EEG rhythmic activities of the somato-sensory cortex reveal event-related desynchronization (ERD) or event-related synchronization (ERS) in beta band (14-30 Hz) as subjects perform certain tasks or react to specific stimuli. Data reported for imagination of movement support the hypothesis that activation of one sensorimotor area (SMA) can be accompanied by deactivation of the other. In order to improve our understanding of beta ERD/ERS generation, two neural mass models (NMM) of a cortical column taken from Wendling et al. (2002) were interconnected to simulate the transmission of information from one cortex to the other. The results show that the excitation of one cortex leads to inhibition of the other and vice versa, enforcing the Theory of Inhibition. This behavior strongly depends on the initial working point (WP) of the neural populations (between the linear and the upper saturation region of a sigmoidal function) and on how the cortical activation or deactivation can move the WP in the upper saturation region ERD or in the linear region ERS, respectively.

3.
Front Hum Neurosci ; 8: 601, 2014.
Article in English | MEDLINE | ID: mdl-25147519

ABSTRACT

Transcranial direct current stimulation (tDCS) delivers low electric currents to the brain through the scalp. Constant electric currents induce shifts in neuronal membrane excitability, resulting in secondary changes in cortical activity. Concomitant electroencephalography (EEG) monitoring during tDCS can provide valuable information on the tDCS mechanisms of action. This study examined the effects of anodal tDCS on spontaneous cortical activity in a resting brain to disclose possible modulation of spontaneous oscillatory brain activity. EEG activity was measured in ten healthy subjects during and after a session of anodal stimulation of the postero-parietal cortex to detect the tDCS-induced alterations. Changes in the theta, alpha, beta, and gamma power bands were investigated. Three main findings emerged: (1) an increase in theta band activity during the first minutes of stimulation; (2) an increase in alpha and beta power during and after stimulation; (3) a widespread activation in several brain regions.

SELECTION OF CITATIONS
SEARCH DETAIL
...