Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 102021 09 14.
Article in English | MEDLINE | ID: mdl-34519268

ABSTRACT

The vertebrate-specific DEP domain-containing mTOR interacting protein (DEPTOR), an oncoprotein or tumor suppressor, has important roles in metabolism, immunity, and cancer. It is the only protein that binds and regulates both complexes of mammalian target of rapamycin (mTOR), a central regulator of cell growth. Biochemical analysis and cryo-EM reconstructions of DEPTOR bound to human mTOR complex 1 (mTORC1) and mTORC2 reveal that both structured regions of DEPTOR, the PDZ domain and the DEP domain tandem (DEPt), are involved in mTOR interaction. The PDZ domain binds tightly with mildly activating effect, but then acts as an anchor for DEPt association that allosterically suppresses mTOR activation. The binding interfaces of the PDZ domain and DEPt also support further regulation by other signaling pathways. A separate, substrate-like mode of interaction for DEPTOR phosphorylation by mTOR complexes rationalizes inhibition of non-stimulated mTOR activity at higher DEPTOR concentrations. The multifaceted interplay between DEPTOR and mTOR provides a basis for understanding the divergent roles of DEPTOR in physiology and opens new routes for targeting the mTOR-DEPTOR interaction in disease.


Subject(s)
Gene Expression Regulation/physiology , Intracellular Signaling Peptides and Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Line , Cryoelectron Microscopy , Crystallography, X-Ray , Humans , Intracellular Signaling Peptides and Proteins/genetics , Moths , Protein Domains , TOR Serine-Threonine Kinases/genetics
2.
Sci Adv ; 6(45)2020 11.
Article in English | MEDLINE | ID: mdl-33158864

ABSTRACT

The protein kinase mammalian target of rapamycin (mTOR) is the central regulator of cell growth. Aberrant mTOR signaling is linked to cancer, diabetes, and neurological disorders. mTOR exerts its functions in two distinct multiprotein complexes, mTORC1 and mTORC2. Here, we report a 3.2-Å resolution cryo-EM reconstruction of mTORC2. It reveals entangled folds of the defining Rictor and the substrate-binding SIN1 subunits, identifies the carboxyl-terminal domain of Rictor as the source of the rapamycin insensitivity of mTORC2, and resolves mechanisms for mTORC2 regulation by complex destabilization. Two previously uncharacterized small-molecule binding sites are visualized, an inositol hexakisphosphate (InsP6) pocket in mTOR and an mTORC2-specific nucleotide binding site in Rictor, which also forms a zinc finger. Structural and biochemical analyses suggest that InsP6 and nucleotide binding do not control mTORC2 activity directly but rather have roles in folding or ternary interactions. These insights provide a firm basis for studying mTORC2 signaling and for developing mTORC2-specific inhibitors.


Subject(s)
Carrier Proteins , TOR Serine-Threonine Kinases , Carrier Proteins/metabolism , Humans , Mechanistic Target of Rapamycin Complex 2/metabolism , Nucleotides/metabolism , Rapamycin-Insensitive Companion of mTOR Protein/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism
3.
Proc Natl Acad Sci U S A ; 117(2): 1000-1008, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31882446

ABSTRACT

Cytosolic hybrid histidine kinases (HHKs) constitute major signaling nodes that control various biological processes, but their input signals and how these are processed are largely unknown. In Caulobacter crescentus, the HHK ShkA is essential for accurate timing of the G1-S cell cycle transition and is regulated by the corresponding increase in the level of the second messenger c-di-GMP. Here, we use a combination of X-ray crystallography, NMR spectroscopy, functional analyses, and kinetic modeling to reveal the regulatory mechanism of ShkA. In the absence of c-di-GMP, ShkA predominantly adopts a compact domain arrangement that is catalytically inactive. C-di-GMP binds to the dedicated pseudoreceiver domain Rec1, thereby liberating the canonical Rec2 domain from its central position where it obstructs the large-scale motions required for catalysis. Thus, c-di-GMP cannot only stabilize domain interactions, but also engage in domain dissociation to allosterically invoke a downstream effect. Enzyme kinetics data are consistent with conformational selection of the ensemble of active domain constellations by the ligand and show that autophosphorylation is a reversible process.


Subject(s)
Caulobacter crescentus/metabolism , Cyclic GMP/analogs & derivatives , Histidine Kinase/chemistry , Histidine Kinase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Caulobacter crescentus/genetics , Cell Cycle/physiology , Crystallography, X-Ray , Cyclic GMP/chemistry , Cyclic GMP/metabolism , Histidine Kinase/genetics , Models, Molecular , Molecular Dynamics Simulation , Phosphorylation , Protein Binding , Protein Conformation , Protein Domains , Second Messenger Systems
SELECTION OF CITATIONS
SEARCH DETAIL
...