Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Microbiol ; 120(2): 329-45, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26551888

ABSTRACT

AIMS: Casizolu is a traditional Sardinian (Italy) pasta filata cheese made with cow raw milk belonging to Sardo-Modicana and/or Bruno-Sarda breeds added with natural whey starter. This work aims to describe the traditional technology of this product and to evaluate the microbial groups/species involved in the first month of ripening. METHODS AND RESULTS: Raw milk, curd after stretching and Casizolu cheese samples from two different farmsteads were subjected to enumeration of microbial groups, isolation and genotypic characterization of isolates and PCR temporal temperature gel electrophoresis (TTGE) analysis. The counts of lactobacilli and lactococci groups in raw milk were about 5-6 log UFC ml(-1) of milk. These counts tended to increase in curd and cheeses, reaching values higher than 8 log UFC g(-1) of cheese. Culture dependent and independent approaches employed in this work highlighted the fundamental role of Lactococcus lactis subsp. lactis, Streptococcus thermophilus and Lactobacillus paracasei in the manufacture and ripening of Casizolu cheese. Other species frequently isolated were Enterococcus durans, Enterococcus faecium, Enterococcus italicus while Enterococcus lactis, Streptococcus parauberis, Lactobacillus plantarum, Lactobacillus pentosus, Lactobacillus brevis, Lactobacillus fermentum and Lactococcus raffinolactis were isolated occasionally. CONCLUSIONS: Lactococcus lactis subsp. lactis, Strep. thermophilus and Lact. paracasei were the principal bacterial species involved in the Casizolu cheese manufacturing and ripening. For the first time, Ent. italicus and Ent. lactis were isolated in the pasta filata cheese. SIGNIFICANCE AND IMPACT OF THE STUDY: This study shows the first data on microbial groups and species involved in the manufacture of Casizolu cheese and highlights the role of Lact. paracasei and Enterococcus spp. from the earliest stages of ripening cheese; furthermore, provides evidence that raw milk cheese is a source of new strains and therefore a reservoir of microbial biodiversity.


Subject(s)
Bacteria/isolation & purification , Cheese/microbiology , Milk/microbiology , Animals , Bacteria/classification , Bacteria/metabolism , Biodiversity , Cattle , Culture Media/metabolism , Fermentation , Italy , Molecular Sequence Data
2.
Commun Agric Appl Biol Sci ; 78(2): 73-82, 2013.
Article in English | MEDLINE | ID: mdl-25145227

ABSTRACT

Microorganisms are natural contaminants of fresh produce and minimally processed products, and contamination arises from a number of sources, including the environment, postharvest handling and processing. Fresh-cut products are particularly susceptible to microbial contaminations because of the changes occurring in the tissues during processing. In package gas composition of modified atmosphere packaging (MAP) in combination with low storage temperatures besides reducing physiological activity of packaged produce, can also delay pathogen growth. Present study investigated on the effect of MAPs, achieved with different plastic films, on microbial growth of minimally processed cactus pear (Opuntio ficus-indica) fruit. Five different plastic materials were used for packaging the manually peeled fruit. That is: a) polypropylene film (Termoplast MY 40 micron thickness, O2 transmission rate 300 cc/m2/24h); b) polyethylene film (Bolphane BHE, 11 micron thickness, O2 transmission rate 19000 cc/m2/24h); c) polypropylene laser-perforated films (Mach Packaging) with 8, 16 or 32 100-micron holes. Total aerobic psychrophilic, mesophilic microorganisms, Enterobacteriaceae, yeast, mould populations and in-package CO2, O2 and C2H4 were determined at each storage time. Different final gas compositions, ranging from 7.8 KPa to 17.1 KPa O2, and 12.7 KPa to 2.6 KPa CO2, were achieved with MY and micro perforated films, respectively. Differences were detected in the mesophilic, Enterobacteriaceae and yeast loads, while no difference was detected in psychrophilic microorganisms. At the end of storage, microbial load in fruits sealed with MY film was significantly lower than in those sealed with BHE and micro perforated films. Furthermore, fruits packed with micro-perforated films showed the highest microbial load. This occurrence may in part be related to in-package gas composition and in part to a continuous contamination of microorganisms through micro-holes.


Subject(s)
Food Packaging/methods , Fruit/chemistry , Opuntia/microbiology , Bacteria/growth & development , Food Handling , Food Packaging/instrumentation , Food Storage , Fruit/microbiology , Fungi/growth & development , Humans , Opuntia/chemistry , Taste
3.
Food Sci Technol Int ; 17(1): 23-9, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21364042

ABSTRACT

This study evaluated the shelf life of fresh pasta filled with cheese subjected to modified atmosphere packaging (MAP) or air packaging (AP). After a pasteurization treatment, fresh pasta was packaged under a 50/50 N(2)/CO(2) ratio or in air (air batch). Changes in microbial growth, in-package gas composition, chemical-physical parameters and sensory attributes were monitored for 42 days at 4 (°)C. The pasteurization treatment resulted in suitable microbiological reduction. MAP allowed a mold-free shelf life of the fresh filled pasta of 42 days, whereas air-packaged samples got spoilt between 7 and 14 days. The hurdle approach used (MAP and low storage temperature) prevented the growth of pathogens and alterative microorganisms. MAP samples maintained a high microbiological standard throughout the storage period. The panel judged MAP fresh pasta above the acceptability threshold throughout the shelf life.


Subject(s)
Food Handling , Food Microbiology , Food Packaging/methods , Food Preservation , Hydrogen-Ion Concentration , Time Factors , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...