Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34361397

ABSTRACT

The variety of material classes engaged for constructions is very wide, ranging from naturally occurring substances, such as stone materials and wood, to manufactured products such as inorganic binders, ceramic bricks, adhesives, metals, composites like concrete, bituminous or fibre-reinforced materials [...].

2.
Materials (Basel) ; 13(2)2020 Jan 08.
Article in English | MEDLINE | ID: mdl-31936388

ABSTRACT

A new accelerated concrete prism expansion test at 38 °C (accelerated CPT) is proposed for assessing the alkali-reactivity of concrete aggregates. In this test, concrete prisms with a standardized mix composition and different alkali contents are immersed in alkaline solutions with compositions simulating the pore liquid of hardened concretes. The concrete prism expansion test at 38 °C and RH > 95% (traditional CPT) was taken as a reference test, in order to define the appropriate expansion limit criterion for the proposed accelerated CPT. Three natural aggregates of known field performance and different alkali-silica reactivity were tested. The compositions of alkaline solutions were designed by assuming total dissolution of cement alkalis and taking a ratio between the mass fractions of effective water consumed by cement hydration and of alkalis uptaken by cement hydrates equal to unity. This simplified approach was found in an acceptable agreement with literature empirical equations correlating pore solution alkalinity of hardened Portland cement mixes with total alkali content of cement. Elaboration of expansion data through both pass-fail and threshold alkali level (TAL)-evaluation approaches indicated that, for the accelerated CPT, an expansion limit criterion of 0.04% after 120 days of testing in alkaline solutions is appropriate to evaluate the aggregate alkali reactivity congruently with the traditional CPT. Use of the proposed test method in place of the traditional CPT would reduce the test duration from 365 to 120 days.

4.
Waste Manag ; 90: 10-16, 2019 May 01.
Article in English | MEDLINE | ID: mdl-31088665

ABSTRACT

The compliance of the chemical and environmental requirements for using woody biomass fly ash (WBFA) as a mineral admixture in cement-based materials was studied in terms of the use of the cement-biomass fly ash concrete where the fluids surrounding and interacting with it renew themselves over time. The study was preceded by a preliminary characterization of WBFA whose results showed that the European chemical requirements (EN 450-1, 2012) established for the reuse of coal fly ash in cement-based materials (there is no normative for WBFA) were met except for the chloride content. A blend with a quite high content of WBFA (30%) and Portland cement (70%) was prepared to test the leaching behaviour of the cement-biomass fly ash concrete. After that, cubic specimens were cast from a paste with water:solid ratio 0.5 and subsequently cured for 28 days at 20 °C. Monolith leaching tests were carried out on the specimens for heavy metals leachability, following the standard leaching test NEN 7345 that was modified to make it able to simulate an aggressive environmental context where the hardened cementitious material was supposed to be placed. The results have shown a good capacity of the cement-biomass fly ash material to immobilize the heavy metals (Cd, Cr, Cu, Ni, Pb, Zn) present in the WBFA. Also, the extrapolated releases of these metals after 100 years were found below the limits established by the Dutch Building Materials Decree. Thus, the reuse of WBFA in cement-based materials may be considered compatible with the environmental requirements.


Subject(s)
Coal Ash , Metals, Heavy , Biomass , Construction Materials , Incineration
5.
Materials (Basel) ; 11(8)2018 Aug 09.
Article in English | MEDLINE | ID: mdl-30096924

ABSTRACT

This paper proposes a simple model for predicting the development of deleterious expansion from alkali-silica reaction (ASR) in long-service concrete structures. This model is based on some composition and reactivity parameters related to ASR, including the long-term alkali contribution by aggregates to concrete structures. This alkali contribution was estimated by means of a laboratory extraction test, appositely developed in this study in order to maximize the alkali extraction within relatively short testing times and with low leaching solution/aggregate ratios. The proposed test is a modification of the Italian Standard test method UNI 11417-2 (Ente Nazionale Italiano di Normazione) and it consists of subjecting an aggregate sample to leaching with saturated calcium hydroxide solution in a laboratory autoclave at 105 °C. Nine natural ASR-susceptible aggregates (seven sands and two coarse aggregates) were tested and the following optimized test conditions were found: leaching solution/aggregate weight ratio = 0.6; solid calcium hydroxide/aggregate weight ratio = 0.05; test duration = 120 h. The results of the optimized alkali extraction tests were used in the proposed model for predicting the potential development of long-term ASR expansion in concrete dams. ASR predictions congruent with both the field experience and the ASR prevention criteria recommended by European Committee for Standardization Technical Report CEN/TR 16349:2012 were found, thus indicating the suitability of the proposed model.

6.
J Hazard Mater ; 227-228: 1-8, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22664254

ABSTRACT

A new leaching test on comminuted (0.125-2.0mm gradation) cementitious matrices, designated as Modified-Pore Water (M-PW) test, was developed to evaluate the effect of varying leachate pH (4-12.8) and/or liquid-to-solid, L/S, ratio (0.6-50 dm(3)/kg) on the availability factor, F(AV), of heavy metals. The M-PW test was applied to leaching of lead and zinc ions from ground Portland cement mortar incorporating Municipal Solid Waste Incinerator (MSWI) fly ash. Correlation of M-PW test results (F(AV)-L/S data) allowed the determination of the pore-liquid availability factor, F(AVP), at different leachate pHs. These F(AVP) values were utilized, in conjunction with a kinetic pseudo-diffusional model, to evaluate the leaching behavior of monolithic mortar specimens subjected to dynamic leaching tests (constant leachant pH 4 or 6).A good agreement was found between the effective diffusion coefficients, D(e), of lead and zinc ions calculated by such a methodological approach and those obtained from recognized microstructural models. In contrast, no satisfactory agreement was found when these D(e) values were compared with the ones calculated from the results of other availability tests on granular solid samples (NEN 7341 and AAT tests).


Subject(s)
Coal Ash/chemistry , Construction Materials , Environmental Pollutants/chemistry , Lead/chemistry , Zinc/chemistry , Hydrogen-Ion Concentration , Incineration , Industrial Waste , Models, Theoretical
7.
J Hazard Mater ; 151(2-3): 585-93, 2008 Mar 01.
Article in English | MEDLINE | ID: mdl-17658684

ABSTRACT

The reuse of cement-solidified Municipal Solid Waste Incinerator (MSWI) fly ash (solidified/stabilised (S/S) product) as an artificial aggregate in Portland cement mortars was investigated. The S/S product consisted of a mixture of 48 wt.% washed MSWI fly ash, 20 wt.% Portland cement and 32 wt.% water, aged for 365 days at 20 degrees C and 100% RH. Cement mortars (water/cement weight ratio=0.62) were made with Portland cement, S/S product and natural sand at three replacement levels of sand with S/S product (0%, 10% and 50% by mass). After 28 days of curing at 20 degrees C and 100% RH, the mortar specimens were characterised for their physico-mechanical (porosity, compressive strength) and leaching behaviour. No retardation in strength development, relatively high compressive strengths (up to 36 N/mm2) and low leaching rates of heavy metals (Cr, Cu, Pb and Zn) were always recorded. The leaching data from sequential leach tests on monolithic specimens were successfully elaborated with a pseudo-diffusional model including a chemical retardation factor related to the partial dissolution of contaminant.


Subject(s)
Carbon/chemistry , Incineration , Particulate Matter/chemistry , Refuse Disposal/methods , Carbon/analysis , Coal Ash , Compressive Strength , Construction Materials , Diffusion , Hydrogen-Ion Concentration , Industrial Waste , Metals, Heavy/analysis , Metals, Heavy/chemistry , Models, Statistical , Particulate Matter/analysis , Stress, Mechanical , Temperature , Tensile Strength , Time Factors , Waste Management
SELECTION OF CITATIONS
SEARCH DETAIL
...