Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Endocrinol Invest ; 43(6): 821-831, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31894536

ABSTRACT

PURPOSE: Fine and balanced regulation of cell proliferation and apoptosis are key to achieve ovarian follicle development from the primordial to the preovulatory stage and therefore assure female reproductive function. While gonadotropins are the major and most recognized regulators of follicle cell growth and function, other factors, both systemic and local, play equally important roles. This work is aimed at evaluating the effects of thyroid hormones (THs) on human granulosa luteinized (hGL) viability. METHODS: Human GL cells derived from assisted reproduction treatments were exposed to T3 or T4. Cell viability was evaluated by MTT assay. Apoptosis was evaluated by the TUNEL assay and active caspase-3 staining. StAR, CYP19A1,Caspase-3, P53 and BAX mRNA were evaluated by real-time PCR. LC3-I/-II, AKT and pAKT were evaluated by western blot. RESULTS: T3 and T4 promoted cell viability in a dose-dependent modality and modulate StAR and CYP19A1 expression. T3 and to a lesser extent T4 mitigated cell death induced by serum starvation by inhibition of caspase-3 activity and expression of P53 and BAX; and attenuate cell death experimentally induced by C2-ceramide. Cell death derived from starvation appeared to be involved in autophagic processes, as the levels of autophagic markers (LC3-II/LC3-I ratio) decreased when starved cells were exposed to T3 and T4. This effect was associated with an increase in pAkt levels. CONCLUSION: From the present study, THs emerge as potent anti-apoptotic agents in hGL cells. This effect is achieved by inhibiting the apoptosis signalling pathway of BAX and caspase-3, while maintaining active the PI3K/AKT pathway.


Subject(s)
Apoptosis/drug effects , Granulosa Cells/drug effects , Luteal Cells/drug effects , Thyroxine/pharmacology , Triiodothyronine/pharmacology , Apoptosis/physiology , Cell Survival/drug effects , Cell Survival/physiology , Cells, Cultured , Dose-Response Relationship, Drug , Female , Granulosa Cells/physiology , Humans , Luteal Cells/physiology
2.
J Endocrinol Invest ; 42(3): 271-282, 2019 Mar.
Article in English | MEDLINE | ID: mdl-29934772

ABSTRACT

PURPOSE: Thyroid disorders are clinically associated with impaired fertility in women, and these abnormalities can be improved by restoring the euthyroid state. The exact mechanisms of thyroid effect on female fertility are not well known; however, it is conceivable that thyroid hormones (THs) might act on ovarian physiology via receptors in granulosa cells. This work is aimed at evaluating the effects of THs on non-tumoral granulosa cells and follicles. METHODS: Freshly isolated rat ovarian follicles and granulosa cells were exposed to T3 or T4 (THs). Cell growth and viability were evaluated by cell counting and the MTT assay, respectively, follicle growth was evaluated by volume measurements. Apoptosis was evaluated by the TUNEL assay and active Caspase 3 staining. rGROV cells were exposed to T3, and apoptosis was induced by serum deprivation. Bcl2, Bcl-2-associated X protein (BAX), Akt and pAkt expression were evaluated by western blot. RESULTS: T3 induced a 40% increase in follicle volume (after 7 days). This increase was presumably due to the observed decrease (33%) in the apoptotic rate of the granulosa cell population. Both T3 and T4 caused a dose-dependent increase in rat granulosa cell number and viability. In addition, THs decreased the cell apoptotic rate in a dose-dependent manner. In both conditions, T3 appeared to be more efficient. In rGROV cells, 100 nM T3 induced cell growth and, in the absence of growth factors, reduced cell apoptosis by 40%, downregulating Caspase 3 and BAX. This effect was associated with an increase in pAkt levels. The involvement of the PI3 K pathway was confirmed by the ability of the PI3 K specific inhibitor (LY-294,002) to abolish T3 pro-survival action. CONCLUSIONS: THs influence cell survival of ovarian granulosa cells. This effect likely contributes to the TH-induced follicle volume increase.


Subject(s)
Cell Proliferation/drug effects , Granulosa Cells/cytology , Mitogens/pharmacology , Ovarian Follicle/cytology , Thyroxine/pharmacology , Triiodothyronine/pharmacology , Animals , Apoptosis , Cells, Cultured , Female , Granulosa Cells/drug effects , Ovarian Follicle/drug effects , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...