Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-37873473

ABSTRACT

Mammalian cells make the decision to divide at the G1/S transition in response to diverse signals impinging on the retinoblastoma protein Rb, a cell cycle inhibitor and tumor suppressor. Rb is inhibited by two parallel pathways. In the canonical pathway, Cyclin D-Cdk4/6 kinase complexes phosphorylate and inactivate Rb. In the second, recently discovered pathway, Rb concentration decreases during G1 to promote cells progressing through the G1/S transition. However, the mechanisms underlying this second pathway are unknown. Here, we found that the Rb concentration drop in G1 and recovery in S/G2 is controlled by phosphorylation-dependent protein degradation. In early G1 phase, un- and hypo-phosphorylated Rb is targeted by the E3 ligase UBR5. UBR5 knockout cells have higher Rb concentrations in early G1, exhibit a lower G1/S transition rate, and are more sensitive to Cdk4/6 inhibition. This last observation suggests that UBR5 inhibition can strengthen the efficacy of Cdk4/6 inhibitor-based cancer therapies.

SELECTION OF CITATIONS
SEARCH DETAIL
...