Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE/ACM Trans Comput Biol Bioinform ; 19(3): 1881-1886, 2022.
Article in English | MEDLINE | ID: mdl-33095703

ABSTRACT

With a structural bioinformatic approach, we have explored amino acid compositions at PISA defined interfaces between small molecules and proteins that are contained in an optimized subset of 11,351 PDB files. The use of a series of restrictions, to prevent redundancy and biases from interactions between amino acids with charged side chains and ions, yielded a final data set of 45,230 protein-small molecule interfaces. We have compared occurrences of natural amino acids in surface exposed regions and binding sites for all the proteins of our data set. From our structural bioinformatic survey, the most relevant signal arose from the unexpected Gly abundance at enzyme catalytic sites. This finding suggested that Gly must have a fundamental role in stabilizing concave protein surface moieties. Subsequently, we have tried to predict the effect of in silico Gly mutations in hen egg white lysozyme to optimize those conditions that can reshape the protein surface with the appearance of new pockets. Replacing amino acids having bulky side chains with Gly in specific protein regions seems a feasible way for designing proteins with additional surface pockets, which can alter protein surface dynamics, therefore, representing controllable switches for protein activity.


Subject(s)
Computational Biology , Glycine , Amino Acids/chemistry , Amino Acids/genetics , Binding Sites/genetics , Glycine/chemistry , Glycine/genetics , Protein Conformation , Proteins/chemistry
2.
PLoS One ; 11(2): e0148174, 2016.
Article in English | MEDLINE | ID: mdl-26849571

ABSTRACT

Genetic code redundancy would yield, on the average, the assignment of three codons for each of the natural amino acids. The fact that this number is observed only for incorporating Ile and to stop RNA translation still waits for an overall explanation. Through a Structural Bioinformatics approach, the wealth of information stored in the Protein Data Bank has been used here to look for unambiguous clues to decipher the rationale of standard genetic code (SGC) in assigning from one to six different codons for amino acid translation. Leu and Arg, both protected from translational errors by six codons, offer the clearest clue by appearing as the most abundant amino acids in protein-protein and protein-nucleic acid interfaces. Other SGC hidden messages have been sought by analyzing, in a protein structure framework, the roles of over- and under-protected amino acids.


Subject(s)
Computational Biology , Genetic Code/genetics , Codon/genetics , Databases, Protein , Humans , Models, Molecular , Nucleic Acid Conformation , Protein Conformation , Proteins/chemistry , Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...