Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Environ Microbiol ; 61(12): 4413-7, 1995 Dec.
Article in English | MEDLINE | ID: mdl-16535195

ABSTRACT

Clostridium butyricum mutants were isolated from the parent strain DSM 5431 after mutagenesis with N-methyl-N(prm1)-nitro-N-nitrosoguanidine and two selection procedures: osmotic pressure and the proton suicide method. Isolated mutants were more resistant to glycerol and to 1,3-propanediol (1,3-PD) than was the wild type, and they produced more biomass. In batch culture on 62 g of glycerol per liter, the wild type produced more acetic acid than butyrate, with an acetate/butyrate ratio of 5.0, whereas the mutants produced almost the same quantities of both acids or more butyrate than acetate with acetate/butyrate ratios from 0.6 to 1.1. The total acid formation was higher in the wild-type strain. Results of analysis of key metabolic enzymatic activities were in accordance with the pattern of fermentation product formation: either the butyrate kinase activity increased or the acetate kinase activity decreased in cell extracts of the mutants. A decreased level of the hydrogenase and NADH-ferredoxin activities concomitant with an increase in ferredoxin-NAD(sup+) reductase activities supports the conclusion that the maximum percentage of NADH available and used for the formation of 1,3-PD was higher for the mutants (97 to 100%) than for the wild type (70%). In fed-batch culture, at the end of the fermentation (72 h for the wild-type strain and 80 to 85 h for the mutants), 44% more glycerol was consumed and 50% more 1,3-PD was produced by the mutants than by the wild-type strain.

2.
Curr Microbiol ; 31(1): 23-7, 1995 Jul.
Article in English | MEDLINE | ID: mdl-7767225

ABSTRACT

The effect of six different conjugated bile salts (two trihydroxyconjugated bile salts: tauro and glycocholic acids; and four dihydroxyconjugated bile salts: tauro- and glycochenodeoxycholic, tauro- and glycodeoxycholic acids) on eight bifidobacteria strains were studied. A strong growth-inhibitory effect was observed (80% at 0.95 mM) for each bile salt and strain. This phenomenon was explained by the production of deconjugated bile salt during bifidobacteria growth. The deconjugation phenomenon was concurrent with biomass production, and deconjugated bile salts were the sole compound produced during bifidobacteria biotransformation. In resting cell experiments, differences appeared between the strains and the kind of bile salts, particularly concerning taurocholic acid. The Bifidobacterium longum strains were the most efficient among the bacteria tested.


Subject(s)
Bifidobacterium/drug effects , Bile Acids and Salts/pharmacology , Bifidobacterium/growth & development , Bifidobacterium/metabolism , Bile Acids and Salts/pharmacokinetics , Biotransformation , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...