Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0302211, 2024.
Article in English | MEDLINE | ID: mdl-38635726

ABSTRACT

Evolutionary maintenance of dioecy is a complex phenomenon and varies by species and underlying pathways. Also, different sexes may exhibit variable resource allocation (RA) patterns among the vegetative and reproductive functions. Such differences are reflected in the extent of sexual dimorphism. Though rarely pursued, investigation on plant species harbouring intermediate sexual phenotypes may reveal useful information on the strategy pertaining to sex-ratios and evolutionary pathways. We studied H. rhamnoides ssp. turkestanica, a subdioecious species with polygamomonoecious (PGM) plants, in western Himalaya. The species naturally inhabits a wide range of habitats ranging from river deltas to hill slopes. These attributes of the species are conducive to test the influence of abiotic factors on sexual dimorphism, and RA strategy among different sexes. The study demonstrates sexual dimorphism in vegetative and reproductive traits. The sexual dimorphism index, aligned the traits like height, number of branches, flower production, and dry-weight of flowers with males while others including fresh-weight of leaves, number of thorns, fruit production were significantly associated with females. The difference in RA pattern is more pronounced in reproductive traits of the male and female plants, while in the PGM plants the traits overlap. In general, habitat conditions did not influence either the extent of sexual dimorphism or RA pattern. However, it seems to influence secondary sex-ratio as females show their significant association with soil moisture. Our findings on sexual dimorphism and RA pattern supports attributes of wind-pollination in the species. The observed extent of sexual dimorphism in the species reiterates limited genomic differences among the sexes and the ongoing evolution of dioecy via monoecy in the species. The dynamics of RA in the species appears to be independent of resource availability in the habitats as the species grows in a resource-limited and extreme environment.


Subject(s)
Hippophae , Sex Characteristics , Reproduction , Pollination , Plants , Resource Allocation
2.
Heredity (Edinb) ; 122(1): 120-132, 2019 01.
Article in English | MEDLINE | ID: mdl-29725078

ABSTRACT

Dioecy and the dynamics of its evolution are intensely investigated aspects of plant reproduction. Seabuckthorn (Hippophae rhamnoides ssp. turkestanica) is an alpine shrub growing wild in certain parts of western Himalaya. The previous studies have reported heteromorphic sex chromosomes in the species and yet marker-based studies indicate high similarity between the male and female genomes. Lack of information on sexual system in the species has further complicated the situation. A systematic study was thus undertaken to understand the sexual system in seabuckthorn and to discern the extent of similarity/dissimilarity between the male and female genomes by generating a large number of markers using amplified fragment length polymorphism and representational difference analysis. Floral biology and regular monitoring of species revealed the presence of polygamomonoecious (PGM) plants in most populations at a low percentage (~2-4%). PGM plants showed low pollen production and overall low fertility, suggesting a monoecy-paradioecy pathway at function. The results of the marker study demonstrated that there are limited differences between male and female genomes and these differences were not uniform across the populations in the Leh-Ladakh region, especially when the geographical distance increases. Results also suggest that a dynamic partitioning of genomes is operational between the two genders of seabuckthorn and differences are not homogenized across the populations. Both reproductive biology-based and DNA marker-based studies indicate that genders have separated recently. The present study proposes seabuckthorn as a promising model system to study evolution of dioecy and sex determination.


Subject(s)
Genome, Plant/genetics , Hippophae/genetics , Sex Chromosomes/genetics , Sex Determination Processes/genetics , Evolution, Molecular , Genes, Plant/genetics , Genetic Markers/genetics , Hippophae/growth & development , Polymorphism, Genetic
3.
Protoplasma ; 254(2): 1063-1077, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27542084

ABSTRACT

Hippophae rhamnoides L. ssp. turkestanica (Elaeagnaceae) is a predominantly dioecious and wind-pollinated medicinal plant species. The mature fruits of the species possess antioxidative, anti-inflammatory, antimicrobial, anticancerous, and antistimulatory properties that are believed to improve the immune system. The identification of male and female plants in H. rhamnoides ssp. turkestanica is quite difficult until flowering which usually takes 3-4 years or more. A sex-linked marker can be helpful in establishing the orchards through identification of genders at an early stage of development. Therefore, we studied the genetic diversity of populations in Ladakh with the aim to identify a gender-specific marker using ISSR markers. Fifty-eight ISSR primers were used to characterize the genome of H. rhamnoides ssp. turkestanica, of which eight primers generated 12 sex-specific fragments specific to one or more populations. The ISSR primer (P-45) produced a fragment which faithfully segregates all the males from the female plants across all the three valleys surveyed. This male-specific locus was converted into a SCAR. Forward and reverse primers designed from this fragment amplified a 750-bp sequence in males only, thus specifying it as an informative male-specific sex-linked marker. This SCAR marker was further validated for its capability to differentiate gender on an additional collection of plants, representing three geographically isolated valleys (Nubra, Suru, and Indus) from Ladakh region of India. The results confirmed sex-linked specificity of the marker suggesting that this conserved sequence at the Y chromosome is well preserved through the populations in Ladakh region. At present, there are no reliable markers which can differentiate male from female plants across all the three valleys of Ladakh region at an early stage of plant development. It is therefore envisaged that the developed SCAR marker shall provide a reliable molecular tool for early identification of the sex in this commercial crop. The genetic diversity of populations as surveyed by ISSR primers revealed 85.71 % polymorphism at the population level. The dendrogram obtained divided the genotypes into three different clusters, and the distribution of male and female genotypes in all the clusters was random. The Nei's genetic similarity index was in the range of 0.63-0.96.


Subject(s)
Altitude , Hippophae/growth & development , Hippophae/genetics , Microsatellite Repeats/genetics , Base Sequence , DNA, Plant/genetics , Genetic Markers , Genetics, Population , Geography , India , Phylogeny , Polymorphism, Genetic , Principal Component Analysis , Reproducibility of Results
4.
AoB Plants ; 72015 Aug 17.
Article in English | MEDLINE | ID: mdl-26286224

ABSTRACT

Knowledge of reproductive biology of plants is crucial to understand their natural mode of propagation, which may aid in conservation and crop improvement. The reproductive details are also crucial for beginning the cultivation of a potential crop on a commercial scale. Fruits of sea buckthorn, Hippophae rhamnoides, are used in a variety of medicinal and nutritional products. So far, fruits are collected from the female plants in the wild. It is known that the species fruits profusely and also propagates by forming root suckers, but the details of sexual reproduction are not available. We investigated the mode of reproduction and development of fruits from natural populations of sea buckthorn. Megasporogenesis and megagametogenesis were studied through resin-embedded sectioning and ovule-clearing methods, and fruit development through histochemistry. The study of mitosis and male meiosis showed that the plants at the site were diploid (2n = 2x = 24). The embryo sac may develop either through the monosporic pathway and differentiates into 'Polygonum type' or aposporously into 'Panicum type'. The embryo may develop by sexual and adventitious pathways. Thus, sea buckthorn is a facultative apomict. The occurrence of diverse reproductive pathways assures the possibility of generation of novel genotypes through sexuality, while apomictic reproduction maintains adaptive genotypes and ensures reproduction in the absence of pollination. Anatomical details suggest that the fruit of sea buckthorn may be appropriately described as a pseudo-drupe.

SELECTION OF CITATIONS
SEARCH DETAIL
...