Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
2.
Nat Commun ; 13(1): 6220, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266281

ABSTRACT

Hotspot mutations in the PEST-domain of NOTCH1 and NOTCH2 are recurrently identified in B cell malignancies. To address how NOTCH-mutations contribute to a dismal prognosis, we have generated isogenic primary human tumor cells from patients with Chronic Lymphocytic Leukemia (CLL) and Mantle Cell Lymphoma (MCL), differing only in their expression of the intracellular domain (ICD) of NOTCH1 or NOTCH2. Our data demonstrate that both NOTCH-paralogs facilitate immune-escape of malignant B cells by up-regulating PD-L1, partly dependent on autocrine interferon-γ signaling. In addition, NOTCH-activation causes silencing of the entire HLA-class II locus via epigenetic regulation of the transcriptional co-activator CIITA. Notably, while NOTCH1 and NOTCH2 govern similar transcriptional programs, disease-specific differences in their expression levels can favor paralog-specific selection. Importantly, NOTCH-ICD also strongly down-regulates the expression of CD19, possibly limiting the effectiveness of immune-therapies. These NOTCH-mediated immune escape mechanisms are associated with the expansion of exhausted CD8+ T cells in vivo.


Subject(s)
Lymphoma , Receptor, Notch1 , Humans , Receptor, Notch1/metabolism , B7-H1 Antigen/metabolism , Interferon-gamma/metabolism , CD8-Positive T-Lymphocytes/metabolism , Epigenesis, Genetic , Signal Transduction , Receptor, Notch2/genetics , Receptor, Notch2/metabolism , Lymphoma/genetics
3.
Nat Commun ; 13(1): 4674, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35945217

ABSTRACT

The MYC oncogene is a potent driver of growth and proliferation but also sensitises cells to apoptosis, which limits its oncogenic potential. MYC induces several biosynthetic programmes and primary cells overexpressing MYC are highly sensitive to glutamine withdrawal suggesting that MYC-induced sensitisation to apoptosis may be due to imbalance of metabolic/energetic supply and demand. Here we show that MYC elevates global transcription and translation, even in the absence of glutamine, revealing metabolic demand without corresponding supply. Glutamine withdrawal from MRC-5 fibroblasts depletes key tricarboxylic acid (TCA) cycle metabolites and, in combination with MYC activation, leads to AMP accumulation and nucleotide catabolism indicative of energetic stress. Further analyses reveal that glutamine supports viability through TCA cycle energetics rather than asparagine biosynthesis and that TCA cycle inhibition confers tumour suppression on MYC-driven lymphoma in vivo. In summary, glutamine supports the viability of MYC-overexpressing cells through an energetic rather than a biosynthetic mechanism.


Subject(s)
Apoptosis , Glutamine , Apoptosis/genetics , Cell Line, Tumor , Citric Acid Cycle , Fibroblasts/metabolism , Glutamine/metabolism , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism
4.
Nat Cancer ; 2(8): 853-864, 2021 08.
Article in English | MEDLINE | ID: mdl-34423310

ABSTRACT

Chronic Lymphocytic Leukemia (CLL) has a complex pattern of driver mutations and much of its clinical diversity remains unexplained. We devised a method for simultaneous subgroup discovery across multiple data types and applied it to genomic, transcriptomic, DNA methylation and ex-vivo drug response data from 217 Chronic Lymphocytic Leukemia (CLL) cases. We uncovered a biological axis of heterogeneity strongly associated with clinical behavior and orthogonal to the known biomarkers. We validated its presence and clinical relevance in four independent cohorts (n=547 patients). We find that this axis captures the proliferative drive (PD) of CLL cells, as it associates with lymphocyte doubling rate, global hypomethylation, accumulation of driver aberrations and response to pro-proliferative stimuli. CLL-PD was linked to the activation of mTOR-MYC-oxidative phosphorylation (OXPHOS) through transcriptomic, proteomic and single cell resolution analysis. CLL-PD is a key determinant of disease outcome in CLL. Our multi-table integration approach may be applicable to other tumors whose inter-individual differences are currently unexplained.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , DNA Methylation/genetics , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Oxidative Phosphorylation , Proteomics , TOR Serine-Threonine Kinases/genetics
6.
Int J Mol Sci ; 21(4)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098106

ABSTRACT

All B cell leukaemias and a substantial fraction of lymphomas display a natural niche residency in the bone marrow. While the bone marrow compartment may only be one of several sites of disease manifestations, the strong clinical significance of minimal residual disease (MRD) in the bone marrow strongly suggests that privileged niches exist in this anatomical site favouring central elements of malignant transformation. Here, the co-existence of two hierarchical systems, originating from haematopoietic and mesenchymal stem cells, has extensively been characterised with regard to regulation of the former (blood production) by the latter. How these two systems cooperate under pathological conditions is far less understood and is the focus of many current investigations. More recent single-cell sequencing techniques have now identified an unappreciated cellular heterogeneity of the bone marrow microenvironment. How each of these cell subtypes interact with each other and regulate normal and malignant haematopoiesis remains to be investigated. Here we review the evidences of how bone marrow stroma cells and malignant B cells reciprocally interact. Evidently from published data, these cell-cell interactions induce profound changes in signalling, gene expression and metabolic adaptations. While the past research has largely focussed on understanding changes imposed by stroma- on tumour cells, it is now clear that tumour-cell contact also has fundamental ramifications for the biology of stroma cells. Their careful characterisations are not only interesting from a scientific biological viewpoint but also relevant to clinical practice: Since tumour cells heavily depend on stroma cells for cell survival, proliferation and dissemination, interference with bone marrow stroma-tumour interactions bear therapeutic potential. The molecular characterisation of tumour-stroma interactions can identify new vulnerabilities, which could be therapeutically exploited.


Subject(s)
Cell Communication/immunology , Hematopoietic Stem Cells/immunology , Leukemia, B-Cell/immunology , Mesenchymal Stem Cells/immunology , Tumor Microenvironment/immunology , Hematopoietic Stem Cells/pathology , Humans , Leukemia, B-Cell/pathology , Mesenchymal Stem Cells/pathology , Stromal Cells/immunology , Stromal Cells/pathology
7.
Sci Transl Med ; 12(526)2020 01 15.
Article in English | MEDLINE | ID: mdl-31941829

ABSTRACT

Overcoming drug resistance remains a key challenge to cure patients with acute and chronic B cell malignancies. Here, we describe a stromal cell-autonomous signaling pathway, which contributes to drug resistance of malignant B cells. We show that protein kinase C (PKC)-ß-dependent signals from bone marrow-derived stromal cells markedly decrease the efficacy of cytotoxic therapies. Conversely, small-molecule PKC-ß inhibitors antagonize prosurvival signals from stromal cells and sensitize tumor cells to targeted and nontargeted chemotherapy, resulting in enhanced cytotoxicity and prolonged survival in vivo. Mechanistically, stromal PKC-ß controls the expression of adhesion and matrix proteins, required for activation of phosphoinositide 3-kinases (PI3Ks) and the extracellular signal-regulated kinase (ERK)-mediated stabilization of B cell lymphoma-extra large (BCL-XL) in tumor cells. Central to the stroma-mediated drug resistance is the PKC-ß-dependent activation of transcription factor EB, regulating lysosome biogenesis and plasma membrane integrity. Stroma-directed therapies, enabled by direct inhibition of PKC-ß, enhance the effectiveness of many antileukemic therapies.


Subject(s)
Protein Kinase C beta/metabolism , Apoptosis/drug effects , Drug Resistance, Neoplasm/genetics , Humans , Phosphorylation/drug effects , Signal Transduction/genetics , Signal Transduction/physiology , Stromal Cells/drug effects , Stromal Cells/metabolism , Tumor Cells, Cultured
8.
Nat Commun ; 9(1): 3839, 2018 09 21.
Article in English | MEDLINE | ID: mdl-30242258

ABSTRACT

The Wnt signalling pathway, one of the core de-regulated pathways in chronic lymphocytic leukaemia (CLL), is activated in only a subset of patients through somatic mutations. Here we describe alternative, microenvironment-dependent mechanisms of Wnt activation in malignant B cells. We show that tumour cells specifically induce Notch2 activity in mesenchymal stromal cells (MSCs) required for the transcription of the complement factor C1q. MSC-derived C1q in turn inhibits Gsk3-ß mediated degradation of ß-catenin in CLL cells. Additionally, stromal Notch2 activity regulates N-cadherin expression in CLL cells, which interacts with and further stabilises ß-catenin. Together, these stroma Notch2-dependent mechanisms induce strong activation of canonical Wnt signalling in CLL cells. Pharmacological inhibition of the Wnt pathway impairs microenvironment-mediated survival of tumour cells. Similarly, inhibition of Notch signalling diminishes survival of stroma-protected CLL cells in vitro and disease engraftment in vivo. Notch2 activation in the microenvironment is a pre-requisite for the activation of canonical Wnt signalling in tumour cells.


Subject(s)
Bone Marrow Cells/metabolism , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Mesenchymal Stem Cells/metabolism , Receptor, Notch2/metabolism , Wnt Signaling Pathway , Animals , Cell Line , Cellular Reprogramming , Humans , Mice , Receptor Cross-Talk , beta Catenin/metabolism
9.
Blood ; 122(4): 542-9, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23741012

ABSTRACT

The t(12;21)(p13;q22) translocation is the most common chromosomal abnormality in pediatric leukemia. Although this rearrangement involves 2 well-characterized transcription factors, TEL and AML1, the molecular pathways affected by the result of the translocation remain largely unknown. Also in light of recent studies showing genetic and functional heterogeneities in cells responsible for cancer clone maintenance and propagation, targeting a single common deregulated pathway may be critical for the success of novel therapies. Here we describe a novel signaling pathway that is essential for oncogenic addiction in TEL-AML1 leukemia. Our data indicate a direct role for TEL-AML1, via increasing the activity of RAC1, in regulating the phosphorylation of signal transducer and activator of transcription 3 (STAT3), which results in transcriptional induction of MYC. We demonstrate that human leukemic cell lines carrying this translocation are highly sensitive to treatment with S3I-201, a specific STAT3 inhibitor, and, more interestingly, that primary human leukemic samples are also responsive to the drug in the same concentration range. Thus, STAT3 inhibition represents a promising possible therapeutic strategy for the treatment of TEL-AML1 leukemia.


Subject(s)
Cell Transformation, Neoplastic/genetics , Core Binding Factor Alpha 2 Subunit/physiology , Oncogene Proteins, Fusion/physiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , STAT3 Transcription Factor/physiology , Animals , Apoptosis/genetics , Apoptosis/physiology , Cell Proliferation , Cells, Cultured , Chromosomes, Human, Pair 12/genetics , Chromosomes, Human, Pair 21/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Oncogene Proteins, Fusion/genetics , Oncogenes/genetics , Oncogenes/physiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , STAT3 Transcription Factor/genetics , Translocation, Genetic/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...