Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Parkinsons Dis ; 10(2): 471-480, 2020.
Article in English | MEDLINE | ID: mdl-32116262

ABSTRACT

BACKGROUND: There is a need for reliable and robust Parkinson's disease biomarkers that reflect severity and are sensitive to disease modifying investigational therapeutics. OBJECTIVE: To demonstrate the utility of EEG as a reliable, quantitative biomarker with potential as a pharmacodynamic endpoint for use in clinical assessments of neuroprotective therapeutics for Parkison's disease. METHODS: A multi modal study was performed including aquisition of resting state EEG data and dopamine transporter PET imaging from Parkinson's disease patients off medication and compared against age-matched controls. RESULTS: Qualitative and test/retest analysis of the EEG data demonstrated the reliability of the methods. Source localization using low resolution brain electromagnetic tomography identified significant differences in Parkinson's patients versus control subjects in the anterior cingulate and temporal lobe, areas with established association to Parkinson's disease pathology. Changes in cortico-cortical and cortico-thalamic coupling were observed as excessive EEG beta coherence in Parkinson's disease patients, and correlated with UPDRS scores and dopamine transporter activity, supporting the potential for cortical EEG coherence to serve as a reliable measure of disease severity. Using machine learning approaches, an EEG discriminant function analysis classifier was identified that parallels the loss of dopamine synapses as measured by dopamine transporter PET. CONCLUSION: Our results support the utility of EEG in characterizing alterations in neurophysiological oscillatory activity associated with Parkinson's disease and highlight potential as a reliable method for monitoring disease progression and as a pharmacodynamic endpoint for Parkinson's disease modification therapy.


Subject(s)
Beta Rhythm , Biomarkers , Electroencephalography Phase Synchronization , Electroencephalography/standards , Outcome Assessment, Health Care/standards , Parkinson Disease/diagnosis , Aged , Beta Rhythm/physiology , Dopamine Plasma Membrane Transport Proteins , Electroencephalography/methods , Electroencephalography Phase Synchronization/physiology , Female , Humans , Machine Learning , Male , Middle Aged , Parkinson Disease/drug therapy , Parkinson Disease/physiopathology , Positron-Emission Tomography
2.
Front Mol Neurosci ; 11: 409, 2018.
Article in English | MEDLINE | ID: mdl-30467464

ABSTRACT

Tuberous sclerosis complex (TSC) is an autosomal dominant neurogenetic disorder affecting the brain and other vital organs. Neurological symptoms include epilepsy, intellectual disability, and autism. TSC is caused by a loss-of-function mutation in the TSC1 or TSC2 gene. These gene products form a protein complex and normally suppress mammalian target of rapamycin (mTOR) activity. mTOR inhibitors have been used to treat subependymal glioma (SEGA) that is a brain tumor characteristic of TSC. However, neuropathology of TSC also involves dysregulated cortical circuit formation including neuronal migration, axodendritic differentiation, and synapse formation. It is currently unknown to what extent mTOR signaling inhibitors correct an alteration in neuronal morphology that have already formed prior to the treatment. Here, we address the efficacy of rapamycin treatment on neuronal migration and dendrite formation. Using in utero electroporation, we suppressed Tsc1 expression in a fraction of neuronal progenitor cells during the fetal period. In embryonic brain slices, we found that more Tsc1-suppressed cells remained within the periventricular zone, and rapamycin treatment facilitated neuronal migration. Postnatally, Tsc1-suppressed pyramidal neurons showed more complex branching of basal dendrites and a higher spine density at postnatal day (P) 28. Aberrant arborization was normalized by rapamycin administration every other day between P1 and P13 but not P15 and P27. In contrast, abnormal spine maturation improved by rapamycin treatment between P15 and P27 but not P1 and P13. Our results indicate that there are multiple critical windows for correcting different aspects of structural abnormalities in TSC, and the responses depend on the stage of neuronal circuit formation. These data warrant a search for an additional therapeutic target to treat neurological symptoms of TSC.

SELECTION OF CITATIONS
SEARCH DETAIL
...