Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(23): 21212-21222, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37323420

ABSTRACT

With a power conversion efficiency (PCE) of more than 25%, perovskite solar cells (PSCs) have shown an immense potential application for solar energy conversion. Owing to lower manufacturing costs and facile processibility via printing techniques, PSCs can easily be scaled up to an industrial scale. The device performance of printed PSCs has been improving steadily with the development and optimization of the printing process for the device functional layers. Various kinds of SnO2 nanoparticle (NP) dispersion solutions including commercial ones are used to print the electron transport layer (ETL) of printed PSCs, and high processing temperatures are often required to obtain ETLs with optimum quality. This, however, limits the application of SnO2 ETLs in printed and flexible PSCs. In this work, the use of an alternative SnO2 dispersion solution based on SnO2 quantum dots (QDs) to fabricate ETLs of printed PSCs on flexible substrates is reported. A comparative analysis of the performance and properties of the obtained devices with the devices fabricated employing ETLs made with a commercial SnO2 NP dispersion solution is carried out. The ETLs made with SnO2 QDs are shown to improve the performance of devices by ∼11% on average compared to the ETLs made with SnO2 NPs. It is found that employing SnO2 QDs can reduce trap states in the perovskite layer and improve charge extraction in devices.

2.
J Phys Chem Lett ; 11(1): 221-228, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31814411

ABSTRACT

Herein, we reveal for the first time a comprehensive mechanism of poorly investigated electrochemical decomposition of CH3NH3PbI3 using a set of microscopy techniques (optical, AFM, PL) and ToF-SIMS. We demonstrate that applied electric bias induces the oxidation of I- to I2, which remains trapped in the film in the form of polyiodides, and hence, the process can be conceivably reversed by reduction. On the contrary, reduction of organic methylammonium cation produces volatile products, which leave the film and thus make the degradation irreversible. Our results lead to a paradigm change when considering design principles for improving the stability of complex lead halide materials as those featuring organic cations rather than halide anions as the most electric field-sensitive components. Suppressing the electrochemical degradation of complex lead halides represents a crucial challenge, which should be addressed in order to bring the operational stability of perovskite photovoltaics to commercially interesting benchmarks.

SELECTION OF CITATIONS
SEARCH DETAIL
...