Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
J Basic Microbiol ; 63(11): 1196-1218, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37208796

ABSTRACT

Worldwide mounting demand for better food production to nurture exasperating population emphasizes on reduced crop losses. The incidence of pathogens into the agricultural fields has tend to dwindle plethora of cereal, vegetable, and other fodder crops. This, in turn, has seriously impacted the economic losses on global scale. Apart from this, it is quite challenging to feed the posterity in the coming decades. To counteract this problem, various agrochemicals have been commercialized in the market that no doubt shows positive results but along with adversely affecting the ecosystem. Therefore, the excessive ill-fated use of agrochemicals to combat the plant pests and diseases highlights that alternatives to chemical pesticides are need of the hour. In recent days, management of plant diseases using plant-beneficial microbes is gaining interest as safer and potent alternatives to replace chemically based pesticides. Among these beneficial microbes, actinobacteria especially streptomycetes play considerable role in combating plant diseases along with promoting the plant growth and development along with their productivity and yield. The mechanisms exhibited by actinobacteria include antibiosis (antimicrobial compounds and hydrolytic enzymes), mycoparasitism, nutrient competition, and induction of resistance in plants. Thus, in cognizance with potential of actinobacteria as potent biocontrol agents, this review summarizes role of actinobacteria and the multifarious mechanisms exhibited by actinobacteria for commercial applications.


Subject(s)
Actinobacteria , Pesticides , Ecosystem , Crops, Agricultural , Pesticides/pharmacology , Agrochemicals
2.
Front Plant Sci ; 7: 1869, 2016.
Article in English | MEDLINE | ID: mdl-28018402

ABSTRACT

Biocontrol agents and their bioactive metabolites provide one of the best alternatives to decrease the use of chemical pesticides. In light of this, the present investigation reports the biocontrol potential of Streptomyces hydrogenans DH16 and its metabolites towards Alternaria brassicicola, causal agent of black leaf spot and damping off of seedlings of crucifers. In vitro antibiosis of strain against pathogen revealed complete suppression of mycelial growth of pathogen, grown in potato dextrose broth supplemented with culture supernatant (20% v/v) of S. hydrogenans DH16. Microscopic examination of the fungal growth showed severe morphological abnormalities in the mycelium caused by antifungal metabolites. In vivo studies showed the efficacy of streptomycete cells and culture supernatant as seed dressings to control damping off of Raphanus sativus seedlings. Treatment of pathogen infested seeds with culture supernatant (10%) and streptomycete cells significantly improved seed germination (75-80%) and vigor index (1167-1538). Furthermore, potential of cells and culture supernatant as foliar treatment to control black leaf spot was also evaluated. Clearly visible symptoms of disease were observed in the control plants with 66.81% disease incidence and retarded growth of root system. However, disease incidence reduced to 6.78 and 1.47% in plants treated with antagonist and its metabolites, respectively. Additionally, treatment of seeds and plants with streptomycete stimulated various growth traits of plants over uninoculated control plants in the absence of pathogen challenge. These results indicate that S. hydrogenans and its culture metabolites can be developed as biofungicides as seed dressings to control seed borne pathogens, and as sprays to control black leaf spot of crucifers.

3.
Front Microbiol ; 7: 1004, 2016.
Article in English | MEDLINE | ID: mdl-27446043

ABSTRACT

In agriculture, biocontrol agents have been emerged as safe alternative to chemical pesticides where Streptomyces spp. and their metabolites constitute a great potential for their exploration as potent agents for controlling various fungal phytopathogens. The present study reports an antifungal compound purified from Streptomyces hydrogenans strain DH16, a soil isolate, using silica gel chromatography and semi preparative HPLC. The compound was characterized using various spectroscopic techniques (IR, (1)H and (13)C NMR) and named 10-(2,2-dimethyl-cyclohexyl)-6,9-dihydroxy-4,9-dimethyl-dec-2-enoic acid methyl ester (SH2). Compound (SH2) showed significant inhibitory activity against fungal phytopathogens and resulted in severe morphological aberrations in their structure. Minimal inhibitory and minimal fungicidal concentrations of the compound ranged from 6.25 to 25 µg/ml and 25 to 50 µg/ml, respectively. In vivo evaluation of the compound showed strong control efficacy against Alternaria brassicicola, a seed borne pathogen, on radish seeds. In comparison to mancozeb and carbendazim, the compound was more effective in controlling damping off disease. Additionally, it promoted plant growth with increased rate of seed germination, and displayed no phytotoxicity. The compound retained its antifungal activity after its exposure to temperature of 100°C and sunlight for 1 h. Furthermore, the compound (SH2) when tested for its biosafety was found to be non-cytotoxic, and non-mutagenic against Salmonella typhimurium TA98 and TA100 strains. This compound from S. hydrogenans strain DH16 has not been reported earlier, so this new compound can be developed as an ideal safe and superior biofungicide for the control of various fungal plant diseases.

4.
Pestic Biochem Physiol ; 131: 46-52, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27265826

ABSTRACT

Alpha glucosidase inhibitory activity was exhibited by partially purified fractions obtained from an endophytic Cladosporium velox, isolated from Tinospora cordifolia. Taking into account the increasing importance of digestive enzyme inhibitors as insecticidal agents, the entomopathogenic potential of the fractions obtained was evaluated against Spodoptera litura (Fab.), a polyphagous pest. Considerable mortality was obtained when the larvae were fed on diet supplemented with the partially purified extract. All the concentrations of the extract significantly prolonged the overall developmental period of S. litura. At higher concentrations, the extract influenced the longevity of females as well as their reproductive potential. Phytochemical analysis revealed the presence of phenolic compounds in the active fraction. The phenolic compound responsible for the bioactivities was purified and identified to be chlorogenic acid using HPLC and MS analysis. The content of chlorogenic acid in the extract was quantified to be 250µg/ml. The purified compound also demonstrated inhibition of alpha glycosidases in vivo. The present study indicates that the endophyte imparted resistance to the insects in the plants could be mediated through chlorogenic acid targeting the alpha glycosidases present in the gut of the insect. The isolate obtained can be exploited for the production of chlorogenic acid, which has the potential to be exploited as a biocontrol agent against S. litura.


Subject(s)
Ascomycota/chemistry , Biological Products/pharmacology , Glycoside Hydrolase Inhibitors/pharmacology , Insecticides/pharmacology , Spodoptera/drug effects , Animals , Chlorogenic Acid/pharmacology , Female , Spodoptera/enzymology , alpha-Glucosidases/drug effects , alpha-Glucosidases/metabolism
5.
Appl Biochem Biotechnol ; 175(4): 2020-34, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25432333

ABSTRACT

This study highlights the importance of alpha-glucosidase inhibitors as mechanisms for endophyte-mediated resistance to insect pests. One of the major benefits which endophytes confer on plants is providing resistance against insect pests. This built-in defense mechanism of the plant can be used for exploring ecofriendly strategies for pest control. In the present study, 34 endophytic fungi were isolated from Tinospora cordifolia and screened for their ability to produce alpha-glucosidase inhibitors. Maximum inhibitory activity was observed in an isolate from T. cordifolia (TN-9S), identified to be Cladosporium sp. The inhibitor was purified using chromatographic techniques. The insecticidal activity of the purified inhibitor was evaluated against Spodoptera litura. The inhibitor induced a significant mortality in the larvae of S. litura and adversely affected its survival and development. It also inhibited the activity of α-glycosidases in vivo in the gut of the larvae. The purified inhibitor was determined to be a phenolic compound with amine groups, demonstrating a noncompetitive type of inhibition in vitro. The production of the inhibitor was optimized. Response surface methodology (RSM) analysis revealed a significant interaction between dextrose and malt extract, with first-order effect of pH.


Subject(s)
Biological Control Agents , Cladosporium/physiology , Fungal Proteins/toxicity , Glycoside Hydrolase Inhibitors/toxicity , Insecticides/toxicity , Larva/drug effects , Spodoptera/drug effects , Animals , Culture Media/chemistry , Culture Media/pharmacology , Endophytes/physiology , Factor Analysis, Statistical , Fungal Proteins/biosynthesis , Fungal Proteins/isolation & purification , Glycoside Hydrolase Inhibitors/isolation & purification , Glycoside Hydrolase Inhibitors/metabolism , Hydrogen-Ion Concentration , Insecticides/isolation & purification , Insecticides/metabolism , Larva/physiology , Longevity/drug effects , Spodoptera/physiology , Symbiosis , Tinospora/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL