Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 291(Pt 2): 132687, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34718012

ABSTRACT

In the current work, we present the facile one-pot synthesis of 0.0, 0.5, 1.0, 2.0 and 3.0 wt% of Ni doped ZnO nanoparticles (Ni:ZnO NPs) through combustion route at 550 °C. Structural and vibrational studies approve the synthesis of monophasic hexagonal Ni:ZnO NPs. The crystallite size was calculated to be in the range of 36-60 nm for pure and doped samples. The composition of all elements in the final product along with their homogeneity, was approved through EDX/FESEM e-mapping analysis. The morphology and phase confirmation of the prepared samples was investigated through FESEM and TEM/HRTEM analyses. TEM/HRTEM study shows that the size of grains is within the range of 100 nm and grown along the c-axis as the lattice spacing is found ∼2.6005 Å. Diffused reflectance study was used to estimate the energy gap for all samples and found to reduce from 3.287 eV for pure to 3.258 eV for 3.0 wt% Ni doping. From an applications point of view, the photocatalytic performance of Ni:ZnO NPs was studied, and with 3.0 wt% of Ni doping in ZnO the degradation of methylene blue (MB) and tetracycline (TCN) pollutants were found to be remarkably improved.


Subject(s)
Nanoparticles , Zinc Oxide , Anti-Bacterial Agents , Methylene Blue , Wastewater
2.
Chemosphere ; 287(Pt 2): 132055, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34496336

ABSTRACT

The photocatalytic performance of a semiconducting catalytic system is strongly influenced by charge-carrier separation rate, charge transport properties, surface area, utilization of light energy, and interface bonding. Herein, a series of bismuth vanadate (BiVO4) samples were prepared via hydrothermal method by changing the volume ratios of ethelene glycol and ethanol as a solvent mixture for bismuth precursors. Further, the optimized BiVO4 sheets with hierarchical morphology were used to construct an interface with rod-like g-C3N4 materials, which was confirmed by HRSEM and HRTEM. Due to the formation of an effective interface bonding between BiVO4/g-C3N4, the photoinduced charge carrier's recombination rate was suppressed as confirmed by the PL analysis. The prepared BiVO4/g-C3N4 sample were used to assess the photodegradation efficiency of Rhodamine B (RhB) under direct sunlight irradiation and the photocatalysts degraded ~92.8% of RhB within 2 h. The TOC measurements revealed a 66.4% mineralization efficiency for RhB. In addition, the radical trapping experiments demonstrated that superoxide and hydroxyl radicals are the main reactive species for the degradation. Based on the experimental evidences, a plausible charge transfer mechanism has been proposed. The enhanced photocatalytic activity has been mainly attributed to the inhibition of the recombination rate, enhanced charge carrier transfer efficiency, and high rate of production of reactive species.


Subject(s)
Bismuth , Environmental Pollutants , Nitriles , Sunlight , Vanadates
3.
ACS Omega ; 5(31): 19747-19759, 2020 Aug 11.
Article in English | MEDLINE | ID: mdl-32803070

ABSTRACT

A carbon dot (CD)-intercalated NiFe2O4 (NFO)/graphitic carbon nitride (g-C3N4, g-CN) ternary Z-scheme heterojunction was synthesized by the facile wet chemical method and used for photo-Fenton degradation. The structural, optical, electrical, vibrational, and morphological properties of the photocatalysts were investigated through various analytical methods. The CD-intercalated heterojunction formation was analyzed by high-resolution transmission electron microscopy (HRTEM). The intercalated CD acted as an electron donor/acceptor, which converted a type-II heterojunction to a Z-scheme heterojunction. The formation of Z-scheme heterojunction was confirmed by the enormous production of radicals (hydroxyl (OH•) and superoxide (O2 -)) and the elemental trapping experiment. In particular, the heterojunction photocatalyst NFO/5g-CN/7.5CD showed the highest photo-Fenton degradation efficiency of 99% for rhodamine B (Rh B) and 93% for tetracycline (TCN) in the presence of H2O2. The charge separation and electron transport behaviors of the photocatalyst were examined by photoluminescence (PL) and photocurrent measurements. In the Z-scheme photo-Fenton system, hydroxyl and superoxide radicals played a vital role in the visible-light-driven degradation process. Hence, the prepared Z-scheme ternary photocatalyst is well suitable for wastewater treatment in practical use.

4.
RSC Adv ; 10(15): 8880-8894, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-35496567

ABSTRACT

Herein, a strong redox ability photocatalyst of CdCuS solid solution composited with pyrochlore like Bi2Zr2O7 has been fabricated by the simple hydrothermal method. The robust CdCuS solid solution materials perform the supporting role to the Bi2Zr2O7 nano materials. The structural, optical, valence and vibrational states of the prepared heterostructure materials were analyzed using various characterization techniques. The photocatalytic activity of the as-synthesized Bi2Zr2O7/CdCuS heterostructure has been verified under direct solar light and ambient conditions. The synthesized Bi2Zr2O7/CdCuS nano combination exhibits a better photocatalytic activity for the removal of methylene blue and 4-nitrophenol organic probe molecules. The heterostructure formation between the samples is confirmed by HRTEM analysis. The improved rate of the photocatalytic reaction of the samples is attributed to the formation of heterostructures at the interface. The close interfacial contact between the two materials discloses the effective charge transfer, which leads to suppressed charge carrier recombination. The enhanced photo catalytic activity of redox-mediator-free-Bi2Zr2O7/CdCuS heterostructure, possibly will be credited to the robust redox ability and the several charge transfer channels in the tight contact. The chief radicals produced in the catalytic reduction reaction have been predicted by the scavenger trapping methods and the results are discussed in detail. The obtained information from this study on Bi2Zr2O7/CdCuS delivers some new visions for the design of active photocatalysts with multiple benefits.

5.
J Environ Manage ; 247: 104-114, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31234045

ABSTRACT

The BiFeO3/V2O5 has been successfully synthesized by simple annealing of BiFeO3 nanoplates and V2O5 nanoflower. The phase, structural, optical properties and chemical state of the BiFeO3, V2O5 and different composition of BiFeO3/V2O5 samples were comparatively characterized by various spectroscopic and microscopic techniques. The prepared catalyst exhibits unique photo catalytic and post-oxidation/reduction ability for removal of various (MB, Phenol, CV, RhB) water organic pollutants. Compared to pure BiFeO3 and V2O5, the different Wt % of BiFeO3/V2O5 composition exhibited higher photo catalytic activity. The fortunate BiFeO3/V2O5 interface hybrid photo catalyst makes a significant impact in the enhancement of photo catalytic reaction. This remarkable efficiency could be ascribed to the synergistic effect between the V2O5 petals and BiFeO3 plates. The exceptional morphology, increased surface area, uniformity, less-agglomerated spreading could increase the ability of visible light response, which lead the improved electron transport ability and the higher charge separation. The enhanced rate of photo generated charge carriers separations were evinced by the EIS and PL spectrum measurements. The allowed radical trapping experiment divulge that the hole (h+), and super oxide radical (O2-) are the minimized effect in degradation, on the other hand hydroxyl radical (OH) is plays the foremost role and act as the active radicals in the catalytic organism. In relations of above investigation, a probable photo degradation mechanism of the as-synthesized photo catalyst is carefully explicated. This effort delivers an effective approach to design and fabricate the efficient photo catalyst through integrating of materials, which has a potential for industrial waste water purification.


Subject(s)
Water Purification , Catalysis , Light , Oxidation-Reduction , Phenol
SELECTION OF CITATIONS
SEARCH DETAIL
...