Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 350: 141015, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154676

ABSTRACT

Piezo-photocatalysis of ZnO nanostructures had recently well attracted due to their exceptional potential in degrading the antibiotics and scalable hydrogen production. Here, we have synthesized the Ce3+ doped ZnO nanospheres in a facile wet chemical strategy. Dopant ions induced morphological evolution and optical bandgap tuning had observed in our experiment. Optical absorbance spectrum had confirmed the bandgap shortening occurs with Ce3+ doped ZnO specimens. The bandgap gap value had reduced to 2.82 eV from 3.05eV confirming the visible light responsivity of ZnO nano specimens. Obtained Zn(1-x)CexO nanospheres were utilized to fabricate the p-Si/n- Zn(1-x)CexO heterojunction diodes as well studied the improved electrical conductivity for the Ce3+ specimen-based diodes. Besides, ideality factor and barrier height values of the heterojunction diodes ZnO/p-Si, Zn0.99Ce0.01O/p-Si, Zn0.97Ce0.03O/p-Si, and Zn0.95Ce0.05O/p-Si are 15.97 & 0.43 eV, 15.47 & 0.44 eV, 8.02 & 0.46 eV and 5.21 & 0.47 eV, respectively. Direct sunlight assisted piezo-photocatalytic tetracycline (TC) degradation efficiency of ZnO, Zn0.99Ce0.01O, Zn0.97Ce0.03O, and Zn0.95Ce0.05O nanostructures respectively are 64%, 69%, 74% and 82%. We have produced the hydrogen quantity of 1234 µ mol h-1, 1490 µ mol h-1, 1750 µ mol h-1 and 1980 µ mol h-1 with 0%, 1%, 3% and 5% Ce3+ doped ZnO specimens under the direct sunlight assisted piezo-photocatalytic H2 production from H2S splitting.


Subject(s)
Nanostructures , Zinc Oxide , Zinc Oxide/chemistry , Nanostructures/chemistry , Light , Sunlight
SELECTION OF CITATIONS
SEARCH DETAIL
...